Copyright (c) TigerGraph, Inc. 2015-2018. May contain proprietary and confidential information.

How to use global variables in gsql

Summary

GSQL use ACCUM clause to do aggregation with accumulators. GSQL has a set of built-in accumulator types. Each

the built-in accumulator type.
A global accumulator can be viewed as global state variable, while user traverse the topology, anywhere user can
update the global accumulator.

All sample queries below are based on GSQL 101 sample data set — social graph. Its schema is listed below.

Notation: we use GSQL code block to indicate the code should be invoked from GSQL shell. Comments start with #
sign.

CREATE VERTEX person (PRI MARY_ID name STRING nane STRI NG gender

STRING age INT, state STRI NG
CREATE UNDI RECTED EDGE friendshi p (FROM person, TO person, connect_day

DATETI ME)
CREATE GRAPH soci al (person, friendship)

How to declare a global accumulator

Global accumulator must be declared first before any SELECT query block. Global accumulator's name is always
prefixed with "@@", followed by an user-chose identifier. Just think any variable name with "@@" to indicate this

variable is global visible. Here is an example.

USE GRAPH soci al

CREATE QUERY test GV (VERTEX<person> p) FOR GRAPH soci al {
#decl are an integer global sum accunul ator, where += neans
arithnetic plus
SumAccunxi nt> @@nt = O;

How to accumulate values into it
In this example, we have two SELECT query block. The first one find and mark input vertex p's first-hop neighbors.

And the second SELECT query block find the second-hop neighbors. In both query blocks, we count the
encountered vertices in @@cnt. And last, we decrement it to take out the starting vertex count.

Page 1

Copyright (c) TigerGraph, Inc. 2015-2018. May contain proprietary and confidential information.

USE GRAPH soci al

CREATE QUERY t ot al Nei ghbor (VERTEX<person> p) FOR GRAPH soci al {
#gl obal accunul ator to accumul at e nei ghbor count
SumAccunxi nt> @@nt = 0O;
#l ocal accumul ator to mark which vertex has been seen
OrAccum @isited = fal se;

Start = {p};

#Bel ow, in POST-ACCUM for each vertex that has an accumul at or
cal cul ation i n ACCUM
the post-accum statement will be invoked once.
W add 1 to the global accumulator @@nt in post-accum
Note we add 1 to @@nt for the starting point s, and all its
first-hop nei ghbors,
since all of them has updated @i sited accunul ator in ACCUM cl ause
Fi r st Nei ghbors = SELECT t gt
FROM Start:s-(friendship:e)->person:tgt
ACCUM tgt. @isited += true, s.@isited += true
POST- ACCUM @@nt +=1;

for each second-hop nei ghbors, we add 1 to @@nt

SecondNei ghbors = SELECT t gt
FROM Fi r st Nei ghbors- (friendshi p: e)->person:tgt
WHERE tgt. @isited == fal se
POST- ACCUM @@nt +=1;

#decrenment 1 from @@nt, as we don't count starting point as a

nei ghbor.
@@nt += -1;
PRI NT @@&nt ;
}

| NSTALL QUERY t ot al Nei ghbor
RUN QUERY t ot al Nei ghbor (" Tont")
RUN QUERY t ot al Nei ghbor (" Dan")

Supported global accumulator

https://doc.tigergraph.com/GSQL-Language-Reference-Part-2---Querying.htmli#GSQLLanguageReferencePart2-Qu
eryingv2.0REL-Accumulators

Page 2

https://doc.tigergraph.com/GSQL-Language-Reference-Part-2---Querying.html#GSQLLanguageReferencePart2-Queryingv2.0REL-Accumulators
https://doc.tigergraph.com/GSQL-Language-Reference-Part-2---Querying.html#GSQLLanguageReferencePart2-Queryingv2.0REL-Accumulators

	How to use global variables in gsql

