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CHAPTER 1

Graph-Powered Machine Learning Methods

A note for Early Release readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 10th chapter of the final book.

After completing this chapter, you should be able to:

• List three basic ways that graph data and analytics can improve machine learning
• Point out which graph algorithms have proved valuable for unsupervised learn‐

ing
• Extract graph features to enrich your training data for supervised machine learn‐

ing
• Describe how neural networks have been been extended to learn on graphs
• Provide use cases and examples to illustrate graph-powered machine learning
• Choose which types of graph-powered machine learning are right for you

We now begin the third theme of our book: Learn. That is, we’re going to get serious
about the core of machine learning: model training. Let’s review the machine learning
pipeline that we introduced in Chapter 1. For convenience, we’ve shown it here again,
as Figure 1-1. In the first part of this book, which explored the Connect theme. That
theme fits the first two stages of the pipeline: data acquisition and data preparation.
Graph databases make it easy to pull data from multiple sources into one connected
database and to perform entity resolution.
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Figure 1-1. Machine learning pipeline

In this chapter, we’ll show how graphs enhance the central stages in the pipeline: fea‐
ture extraction and all-important model training. Features are simply the characteris‐
tics or properties of your data entities, like the age of a person or the color of a
sweater. Graphs offer a whole new realm of features which are based on how an entity
connects to other entities. The addition of these unique graph-oriented features pro‐
vides machine learning with better raw materials with which to build its models.

This chapter has four sections. The first three sections each describe a different way
that graphs enhance machine learning. First, we will start with unsupervised learning,
as it is similar to the techniques we discussed in the Analyze section of the book. Sec‐
ond, we will turn to graph feature extraction for supervised and unsupervised
machine learning. Third, we culminate with model training directly on graphs, for
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both supervised and unsupervised approaches. This includes techniques for cluster‐
ing, embedding, and neural networks. Because they work directly on graphs, some
graph databases are now available to offer in-database machine learning. The fourth
section reviews the various methods in order to compare them and to help you
decide which approaches will meet your needs.

Unsupervised Learning with Graph Algorithms
Unsupervised learning is the forgotten sibling of supervised learning and reinforce‐
ment learning, who together form the three major branches of machine learning. If
you want your AI system to learn how to do a task, to classify things according to
your categories, or to make predictions, you want to use supervised learning and/or
reinforcement learning. Unsupervised learning, however, has the great advantage of
being self-sufficient and ready-to-go. Unlike supervised learning, you don’t need to
already know the right answer for some cases. Unlike reinforcement learning, you
don’t have to be patient and forgiving as you stumble through learning by public trial
and error. Unsupervised learning simply takes the data you have and reports what it
learned

Think of each unsupervised learning technique as a specialist who is confident in
their own ability and specialty. We call in the specialist, they tell us something that we
hadn’t noticed before, and we thank them for their contribution. An unsupervised
learning algorithm can look at your network of customers and sales and tell you what
are your actual market segments, which may not fit simple ideas of age and income.
An unsupervised learning algorithm can point out customer behavior that is an out‐
lier, far from normal, by determining “normal” from your data, not from your pre‐
conceptions. For example, an outlier can point out which customers are likely to
churn (choose a competitor’s product or service).

The first way we will learn from graph data is by applying graph algorithms to dis‐
cover patterns or characteristics of our data. Earlier in the book, in the Analyze sec‐
tion, we took our first detailed look at graph algorithms. We’ll now look at additional
families of graph algorithms which go deeper. The line between Analyze and Learn
can be fuzzy. What characterizes these new algorithms is that they look for or deal
with patterns. They could all be classified as pattern discovery or data mining algo‐
rithms for graphs.

Finding Communities
When people are allowed to form their own social bonds, they will naturally divide
into groups. No doubt you observed this, in school, in work, in recreation, and in
online social networks. We form or join communities. However, graphs can depict
any type of relationship, so it can be valuable to know about other types of communi‐
ties in your data. Use cases include:
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• Finding a set of highly interconnected transactions among a set of parties / insti‐
tutions / locations / computer networks which are out of the ordinary: is this a
possible financial crime?

• Finding pieces of software / regulation / infrastructure which are highly connec‐
ted and interdependent. It is good that they are connected, as a sign of popularity,
value, and synergy? Or it is a concerning sign that some components are unable
to stand on their own as expected?

• In the sciences (ecology, cell biology, chemistry), finding a set of highly interact‐
ing species / proteins is evidence of (inter)dependence and can suggest explana‐
tions for such dependence.

Community detection can be used in connection with other algorithms. For example,
first use a PageRank or centrality algorithm to find an entity of interest (e.g., a known
or suspected criminal). Then find the community to which they belong. You could
also swap the order. Find communities first, then count how many parties of note are
within that community. Again, whether that is healthy or not depends on the context.
Algorithms are your tools, but you are the craftsperson.

What is a Community?
In network science, a community is a set of vertices that have a higher density of con‐
nections within the group than to outside the group. Specifically, we look at the edge
density of the community, which is the number of edges between members divided by
the number of vertices. A significant change in edge density provides a natural
boundary between who is in and who is not. Network scientists have defined several
different classes of communities based on how densely they are interconnected.
Higher edge density implies a more resilient community.

The following three types of communities span the range from weakest density to
strongest density and everything in between.

Connected Component
You are in if you have a direct connection to one or more members of the com‐
munity. Requiring only one connection, this is the weakest possible density. In
graph theory, if you simply say “component,” it refers to a connected community
plus the edges that connect them.

K-Core
You are in if you have a direct connection to k or more members of the commu‐
nity, where k is a positive integer.
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Clique
You are in if you have a direct connection to every other member of the commu‐
nity. This is the strongest possible density. Note that clique has a specific meaning
in network science and graph theory.

A connected component is a k-core where k = 1. A clique contain‐
ing c vertices is a k-core where k = (c -1), the largest possible value
for k.

Figure 1-2 illustrates examples of these three definitions of community. On the left,
there are three separate connected components, represented by the three different
shadings. In the center, there are two separate k-cores for k = 2. The lower commu‐
nity, the rectangle with diagonal connections, would also satisfy k = 3 because each
member vertex connects to three others. On the right, there are two separate cliques.

Figure 1-2. Three definitions of community, from weakest at left to strongest at right

Modularity-Based Communities
In many applications, however, we don’t have a specific value of k in mind. In the spi‐
rit of unsupervised learning, we want the data itself to tell us what is dense enough.
To address this, network scientists came up with a measure called modularity which
looks at relative density, comparing the density within communities versus the den‐
sity of connections between communities. This is like looking at the density of streets
within cities versus the road density between cities. Now imagine the city boundaries
are unknown; you just see the roads. If you propose a set of city boundaries, modu‐
larity will rate how good a job you did of maximizing the goal of “dense inside; not
dense outside.” Modularity is a scoring system, not an algorithm. A modularity-based
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community algorithm finds the community boundaries which produce the highest
modularity score.

The Louvain algorithm, named after the University of Louvain, is perhaps the fastest
algorithm for finding community boundaries with a very high modularity. It works
hierarchically by forming small local communities, then substituting each commu‐
nity with a single meta-vertex, and repeating by forming local communities of meta-
vertices.

To measure modularity (Q), we first partition the vertices into a set of communities
so that every vertex belongs to one community. Then, considering each edge as one
case, we calculate some totals and averages:

Q =[ actual fraction of edges that fall within a community] 
minus [expected fraction of edges if edges were distributed at random]

“Expected” is used in the statistical sense: If you flip a coin many times, you expect
50/50 odds of heads vs. tails. Modularity can handle weighted edges by using weights
instead of simple counts:

Q = [average weight of edges that fall within a community] 
minus [expected weight of edges if edges were distributed at random]

Note that the average is taken over the total number of edges. Edges which run from
one community to another add zero to the numerator and add their weight to the
denominator. It is designed this way so that edges which run between communities
hurt your average and lower your modularity score.

What do we mean by “distributed at random”? Each vertex v has a certain number of
edges which connect to it: the degree of a vertex is d(v) = total number (or total weight)
of v’s edges. Imagine that each of these d(v) edges picks a random destination vertex.
The bigger d(v) is, the more likely that one or more of those random edges will make
a connection to a particular destination vertex. The expected (i.e., statistical average)
number of connections between a vertex v1 and a vertex v2 can be computed with
Equation 1-1.

Equation 1-1. Expected number of connections between two vertices based on their
degrees

Erand wt v1, v2 = d v1 d v2
2m

where m is the total number of edges in the graph. For the mathematically inclined,
the complete formula is shown in Equation 1-2 below, where wt(i,j) is the weight of
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the edge between i and j, com(i) is the community ID of vertex i, and δ(a,b) is the
Kronecker delta function which equals 1 if a and b are equal, 0 otherwise.

Equation 1-2. Definition of modularity

Q = 1
2m ∑

i, j ∈ G
wt i, j − d i d j

2m δ comm i , comm j

Finding Similar Things
Being in the same community is not necessarily an indicator of similarity. For exam‐
ple, a fraud ring is a community, but it requires different persons to play different
roles. Moreover, one community can be composed of different types of entities. For
example, a grassroots community centered around a sports team could include per‐
sons, businesses selling fan paraphernalia, gathering events, blog posts, etc. If you
want to know which entities are similar, you need a different algorithm. Fans who
attend the same events and buy the same paraphernalia intuitively seem similar; to be
sure, we need a well-defined way of assessing similarity.

Efficient and accurate measurement of similarity is one of the most important tools
for businesses because it is what underlies personalized recommendation. We have all
seen recommendations from Amazon or other online vendors suggest that we con‐
sider a product because “other persons like you bought this.” If the vendor’s idea of
“like you” is too broad, they may make some silly recommendations which annoy
you. They want to use several characteristics they know or infer about you and your
interests to filter down the possibilities, and then see what similar customers did. Simi‐
larity is used not only for recommendations but also for following up after detecting a
situation of special concern, such as a security vulnerability or a crime of some sort.
We found this case. Are there similar cases out there?

Simply finding similar things does not necessarily qualify as machine learning. The
first two types of similarity we will look at are important to know, but they aren’t
really machine learning. These types are graph-based similarity and neighborhood
similarity. They lead to the third type, role similarity, which can be considered unsu‐
pervised machine learning. Role similarity looks deeply and iteratively in the graph to
refine its understanding of the graph’s structural patterns.

Similarity values are a prerequisite for at least three other machine learning tasks,
clustering, classification, and link prediction. Clustering is putting things that are
close together into the same group. “Close” does not necessarily mean physically close
together; it means…similar. People often confuse communities with clusters. Com‐
munities are based on density of connections; clusters are based on similarity of the
entities. Classification is deciding which of several predefined categories an item
should be placed into. A common meta-approach is to say that an item should be put
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in the same category as that of similar items which have a known category. If things
that look like and walk like it are ducks, then we conclude that it is a duck. Link pre‐
diction is making a calculated guess that a relationship, which does not currently exist
in the dataset, either does exist or will exist in the real world. In many scenarios, enti‐
ties which have similar neighborhoods (circumstances) are likely to have similar rela‐
tionships. The relationship could be anything: a person-person relationship, a
financial transaction, or a job change. Investigators, actuaries, gamblers, and market‐
ers all seek to do accurate link prediction. As we can see, similarity pops up as a pre‐
requisite for numerous machine learning tasks.

Graph-Based Similarity
What makes two things similar? We usually identify similarities by looking at observ‐
able or known properties: color, size, function, etc. A passenger car and a motorcycle
are similar because they are both motorized vehicles for one or a few passengers. A
motorcycle and a bicycle are similar because they are both two-wheeled vehicles. But,
how do we decide whether a motorcycle is more similar to a car or to a bicycle? For
that matter, how would we make such decisions for a set of persons, products, medi‐
cal conditions, or financial transactions? We need to agree upon a system for measur‐
ing similarity. But, to take an unsupervised approach, is there some way that we can
let the graph itself suggest how to measure similarity?

A graph can give us contextual information to help us decide how to determine simi‐
larity. Consider the axiom

A vertex is characterized by its properties, its relationships, and its neighborhood.

Therefore, if two vertices have similar properties, similar relationships, and similar
neighborhoods, then they should be similar. What do we mean by similar neighbor‐
hoods? Let’s start with a simpler case: the exact same neighborhood.

Two entities are similar if they connect to the same neighbors.

In Figure 1-3, Person A and Person B have three identical types of edges (purchased,
hasAccount, and knows), connecting to the three exact same vertices (Phone model
Y, Bank Z, and Person C, respectively). It is not necessary, however, to include all
types of relationships or to give them equal weight. If you care about social networks,
for example, you can consider only friends. If you care about financial matters, you
can consider only financial relationships.
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Figure 1-3. Two persons sharing the same neighborhood

To reiterate the difference between community and similarity: All five entities in
Figure 1-3 are part of a connected component community. However, we would not
say that all five are similar to one another. The only case of similarity suggested by
these relationships is Person A being similar to Person B.

Neighborhood Similarity
It’s rare to find two entities which have exactly the same neighborhoods. We’d like a
way to measure and rank the degree of neighborhood similarity. The two most com‐
mon measures for ranking neighborhood similarity are Jaccard similarity and cosine
similarity.

Jaccard Similarity.    Jaccard similarity measures the relative overlap between two gen‐
eral sets. Suppose you run Bucket List Travel Advisors, and you want to compare
your most frequent travelers to one another based on which destinations they have
visited. Jaccard similarity would be a good method for you to use; the two sets would
be the destinations visited by each of two customers being compared. To formulate
Jaccard similarity in general terms, suppose the two sets are N(a), the neighborhood
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1 The use of a table for our small example may suggest that a graph structure is not needed. We assume you
already decided to organize your data as a graph and now are analyzing and learning from that data.

of vertex a, and N(b), the neighborhood of vertex b. Equation 1-3 gives a precise defi‐
nition of neighborhood-based Jaccard similarity:

Equation 1-3. Jaccard neighborhood similarity

jaccard a, b = number_o f _shared_neighbors
size N a + size N b − number_o f _shared_neighbors

= number_o f _shared_neighbors
number_o f _unique_neighbors

= N a ∩ N b
N a ∪ N b

The maximum possible score is 1, which occurs if a and b have exactly the same
neighbors. The minimum score is 0, if they have no neighbors in common.

Consider the following example. Three travelers, A, B, and C, have traveled to the fol‐
lowing places as shown in Table 1-1.1

Table 1-1. Dataset for Jaccard similarity example
Bucket List’s Top 10 A B C
Amazon Rainforest, Brazil ✔ ✔
Grand Canyon, USA ✔ ✔ ✔
Great Wall, China ✔ ✔
Machu Picchu, Peru ✔ ✔
Paris, France ✔ ✔
Pyramids, Egypt ✔
Safari, Kenya ✔
Taj Mahal, India ✔
Uluru, Australia ✔
Venice, Italy ✔ ✔

Using the table’s data, the Jaccard similarities for each pair of travelers can be compu‐
ted.

• A and B have three destinations in common (Amazon, Grand Canyon, Machu
Picchu). Collectively they have been to nine destinations. jaccard(A, B) = 3/9 =
0.33.

• B and C have only one destination in common (Grand Canyon). Collectively
they have been to ten destinations. jaccard(B, C) = 1/10 = 0.10.
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• A and C have three destinations in common (Grand Canyon, Paris, Venice). Col‐
lectively they have been to seven destinations. jaccard(A, C) = 3/7 = 0.43.

Among these three, A and C are the most similar. As the proprietor, you might sug‐
gest that C visit some of the places that A has visited, such as the Amazon and Machu
Picchu. Or you might try to arrange a group tour, inviting both of them to some‐
where they both have not been to, such as Uluru, Australia.

Cosine Similarity.    Cosine similarity measures the alignment of two sequences of
numerical characteristics. The name comes from the geometric interpretation in
which the numerical sequence is the entity’s coordinates in space. The data points on
the grid (the other type of “graph”) in Figure 1-4 illustrate this interpretation.

Figure 1-4. Geometric interpretation of numeric data vectors.

Point A represents an entity whose feature vector is (2,0). B’s feature vector is (3,1).
Now we see why we call a list of property values a “vector.” The vectors for A and B
are somewhat aligned. The cosine of the angle between them is their similarity score.
If two vectors are pointed in exactly the same direction, the angle between them is 0;
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the cosine of their angle is 1. cos(A,C) is 0 because A and C are perpendicular; the
vectors (2,0) and (0,2) have nothing in common. cos(A,D) is -1 because A and D are
pointed in opposite directions. So, cos(x,y) = 1 for two perfectly similar entities, 0 for
two perfectly unrelated entities, and -1 for two perfectly anticorrelated entities.

Suppose you have scores across several categories or attributes for a set of entities.
You want to cluster the entities, so you need an overall similarity score between enti‐
ties. The scores could be ratings of individual features of products, employees,
accounts, etc. Let’s continue the example of Bucket List Travel Advisors. This time,
each customer has rated their enjoyment of a destination on a scale of 1 to 10, so we
have numerical values, not just yes/no.

Table 1-2. Dataset for cosine similarity example
Bucket List’s Top 10 A B C
Amazon Rainforest, Brazil 8
Grand Canyon, USA 10 6 8
Great Wall, China 5 8
Machu Picchu, Peru 8 7
Paris, France 9 4
Pyramids, Egypt 7
Safari, Kenya 10
Taj Mahal, India 10
Uluru, Australia 9
Venice, Italy 7 10

Here are steps for using this table to compute cosine similarity between pairs of trav‐
elers.

1. List all the possible neighbors and define a standard order for the list so we can
form vectors. We will use the top-down order in Table 10-1, from Amazon to
Venice.

2. If the graph has D possible neighbors, this gives each vertex a vector of length D.
For Table 10-2, D = 10. Each element in the vector is either the edge weight, if
that vertex is a neighbor, or the null score if it isn’t a neighbor.

3. Determining the right null score is important so that your similarity scores mean
what you want them to mean. If a 0 means someone absolutely hated a destina‐
tion, it is wrong to assign a 0 if someone has not visited a destination. A better
approach is to normalize the scores. You can either normalize by entity (traveler),
by neighbor/feature (destination), or by both. The idea is to replace the empty
cells with a default score. You could set the default to be the average destination,
or you could set it a little lower than that, because not having visited a place is a
weak vote against that place. For simplicity, we won’t normalize the scores; we’ll
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just use 6 as the default rating. Then traveler A’s vector is Wt(A) = [8, 10, 5, 8, 9, 6,
6, 6, 6, 7].

4. Then, apply the formula in Equation 1-4 for cosine similarity:

Equation 1-4. Cosine neighborhood similarity

cosine a, b = Wt a Ẇ b
∥ Wt a ∥ ∥ Wt b ∥

=
∑i = 1

D Wt a iWt b i

∑i = 1
D Wt a i

2 ∑i − 1
D Wt b i

2

Wt(a) and Wt(b) are the neighbor connection weight vectors for a and b, respectively.
The numerator goes element by element in the vectors, multiplying the weight from a
by the weight from b, then adding together these products. The more that the weights
align, the larger the sum we get. The denominator is a scaling factor, the Euclidean
length of vector Wt(a) multiplied by the length of vector Wt(b).

Let’s look at one more use case, people who rate movies, to compare how Jaccard and
cosine similarity work. In Figure 1-5, we have two persons A and B who have each
rated three movies. They have both rated two of the same movies, Black Panther and
Frozen.
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Figure 1-5. Similarity of persons who rate movies

If we only care about what movies the persons have seen and not about the scores,
then Jaccard similarity is sufficient and easier to compute. This would also be your
choice if scores were not available or if the relationships were not numeric. The Jac‐
card similarity is (size of overlap) / (size of total set) = 2 / 4 = 0.5. That seems like a
middling score, but if there are hundreds or thousands of possible movies they could
have seen, then it’s a very high score.

If we want to take the movie ratings into account to see how similar are A’s and B’s
taste, we should use cosine similarity. Assuming the null score is 0, then A’s neighbor
score vector is [5, 4, 3, 0] and B’s is [4, 0, 5, 5]. For cosine similarity, the numerator is
[5, 4, 3, 0] ⋅ [4, 0, 5, 5] = (5)(4)+(4)(0)+(3)(5)+(0)(5) = 35. The denominator =

52 + 42 + 32 + 02 42 + 02 + 52 + 52 = 50 66 = 57 . 446. The final result is 0.60927.
This again seems like a reasonably good score, not strong similarity, but much better
than a random pairing.
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Use Jaccard similarity when the features of interest are yes/no or
categorical variables.
Use cosine similarity when you have numerical variables. If you
have both types, you can use cosine similarity and treat your yes/no
variables as having values 1/0

Role Similarity
Earlier we said that if two vertices have similar properties, similar relationships, and
similar neighborhoods, then they should be similar. We first examined the situation
in which the neighborhoods contained some of the exact same members, but let’s
look at the more general scenario in which the individual neighbors aren’t the same,
just similar.

Consider a graph of family relationships. One person, Jordan, has two living parents,
is married to someone who was born in a different country, and they have three chil‐
dren together. Another person, Kim, also has two living parents, is married to some‐
one born in another country, and together they have four children. None of the
neighboring entities (parents, spouses, children) are the same. The number of chil‐
dren is similar but not exactly the same. Nevertheless, Jordan and Kim are similar
because they have similar relationships. This is called role similarity.

Moreover, if Jordan’s spouse and Kim’s spouse are similar, that’s even better. If Jordan’s
children and Kim’s children are similar in some way (ages, hobbies, etc.), that’s even
better. You get the idea. Instead of people, these could be products, components in a
supply chain or power distribution network, or financial transactions.

Two entities have similar roles if they have similar relationships to entities which them‐
selves have similar roles.

This is a recursive definition: A and B are similar if their neighbors are similar.
Where does it stop? What is the base case where we can say for certain how much two
things are similar?

SimRank.    In their 2002 paper, Glen Jeh and Jennifer Widom proposed SimRank
which measures similarity by having equal length paths from A and B both reach the
same individual; e.g., if Jordan and Kim share a grandparent, that contributes to their
SimRank score. The formal definition is shown in Equation 1-5 below.

Equation 1-5. SimRank

simrank a, b = C
In a In b ∑

u ∈ In a
∑

v ∈ In b
simrank In u , In v

simrank a, a = 1
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2 One of the authors of this book, Victor Lee, is a coauthor of RoleSim.

In(a) and In(b) are the sets of in-neighbors of vertices a and b, respectively, u is a
member of In(a), v is a member of In(b), and C is a constant between 0 and 1 to con‐
trol the rate at which neighbors’ influence decreases as distance from a source vertex
increases. Lower values of C mean a more rapid decrease. SimRank computes a N ×
N array of similarity scores, one for each possible pair. This differs from cosine and
Jaccard similarity which compute a single pair’s score on demand. It is necessary to
compute the full array of SimRank scores because the value of SimRank(a,b) depends
of the SimRank score of pairs of their neighbors (e.g., SimRank(u,v)), which in turn
depends on their neighbors, and so on. To compute SimRank, you initialize the array
so that SimRank(a,b) = 1 if a = b; otherwise it is 0. Then calculate a revised set of
scores by applying Equation 1-5 for each pair (a,b) where the SimRank scores on the
right side are from the previous iteration. Note that this is like PageRank’s computa‐
tion except that we have N × N scores instead of just N scores. SimRank’s reliance on
eventually reaching a shared individual, and through equal length paths, is too rigid
for some cases. SimRank does not fully embrace the idea of role similarity. Two indi‐
viduals in two completely separate graphs, e.g. graphs representing two unrelated
families or companies, should be able to show role similarity.

RoleSim.    To address this shortcoming, Ruoming Jin et al.2 introduced RoleSim in
2011. RoleSim starts with the (over)estimate that the similarity between any two enti‐
ties is the ratio of the sizes of their neighbors. The initial estimate for RoleSim(Jordan,
Kim) would be 5/6. RoleSim then uses the current estimated similarity of your neigh‐
bors to make an improved guess for the next round. Equation 1-6 has the formal defi‐
nition of RoleSim.

Equation 1-6. RoleSim

rolesim a, b = 1 − β max
M a, b

∑ u, v ∈ M a, b rolesim u, v
max N u , N v + β

rolesim0 a, b = min N u , N v
max N u , N v

The parameter 𝛽 is similar to SimRank’s C. The main difference is the function M.
M(a,b) is a bipartite matching between the neighborhoods of a and b. This is like try‐
ing to pair up the three children of Jordan with the four children of Kim. M(Jordan,
Kim) will consist of three pairs (and one child left out). Moreover, there are 24 possi‐
ble matchings. For computational purposes (not actual social dynamics), assume that
the oldest child of Jordan selects a child of Kim; there are four options. The next child
of Jordan picks from the three remaining children of Kim, and the third child of Jor‐
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dan can choose from the two remaining children of Kim. This yields (4)(3)(2) = 24
possibilities. The max term in the equation means that we select the matching that
yields the highest sum of RoleSim scores for the three chosen pairs. If you think of
RoleSim as a compatibility score, then we are looking for the combination of pairings
that gives us the highest total compatibility of partners. You can see that this is more
computational work than SimRank, but the resulting scores have nicer properties:

1. There is no requirement that the neighborhoods of a and b every meet.
2. If the neighborhoods of a and b “look” exactly the same, because they have the

same size, and each of the neighbors can be paired up so that their neighbor‐
hoods look the same, and so on, then their RoleSim score will be a perfect 1.
Mathematically, this level of similarity is called automorphic equivalence.

This idea of looking at neighbors of neighbors to get a deeper sense of similarity will
come up again later in the chapter.

Finding Frequent Patterns
As we’ve said early on in this book, graphs are wonderful because they make it easy to
discover and analyze multi-connection patterns based on connections. In the Analyze
section of the book, we talked about finding particular patterns, and we will return to
that topic later in this chapter. In the context of unsupervised learning, the goal is to:

Find any and all patterns which occur frequently.

Computer scientists call this the Frequent Subgraph Mining task, because a pattern of
connections is just a subgraph. This task is particularly useful for understanding nat‐
ural behavior and structure, such as consumer behavior, social structures, biological
structures, and even software code structure. However, it also presents a much more
difficult problem. “Any and all” patterns in a large graph means a vast number of pos‐
sible occurrences to check. The saving grace is the threshold parameter T. To be con‐
sidered frequent, a pattern must occur at least T times. If T is big enough, that could
rule out a lot of options early on. The example below will show how T is used to rule
out small patterns so that they don’t need to be considered as building blocks for
more complex patterns.

There any many advanced approaches to try to speed up frequent subgraph mining,
but the basic approach is to start with 1-edge patterns, keep the patterns that occur at
least T times, and then try to connect those patterns to make bigger patterns:

1. Group all the edges according to their type and the types of their endpoint verti‐
ces. For example, Shopper-(bought)-Product is a pattern.

2. Count how many times each pattern occurs.
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3. Keep all the frequent patterns (having at least T members) and discard the rest.
For example, we keep Shopper-(lives_in)-Florida but eliminate Shopper-
(lives_in)-Guam because it is infrequent.

4. Consider every pair of groups that have compatible vertex types (e.g., groups 1
and 2 both have a Shopper vertex), and see how many individual vertices in
group 1 are also in group 2. Merge these individual small patterns to make a new
group for the larger pattern. For example, we merge the cases where the same
person in the frequent pattern Shopper-(bought)-Blender was also in the fre‐
quent pattern Shopper-(lives_in)-Florida.

5. Repeat steps 2 and 3 (filtering for frequency) for these newly formed larger pat‐
terns.

6. Repeat step 4 using the expanded collection of patterns.
7. Stop when no new frequent patterns have been built.

There is a complication with counting (step 2). The complication is isomorphism,
how the same set of vertices and edges can fit a template pattern in more than one
way. Consider the pattern A-(friend_of)-B. If Jordan is a friend of Kim, which implies
that Kim is a friend of Jordan, is that one instance of the pattern or two? Now sup‐
pose the pattern is “find pairs of friends A and B who are both friends with a third
person C.” This forms a triangle. Let’s say Jordan, Kim, and Logan form a friendship
triangle. There are six possible ways we could assign Jordan, Kim, and Logan to the
variables A, B, and C. You need to decide up front whether these types of symmetrical
patterns should be counted separately or merged into one instance, and then make
sure your counting method is correct.

Summary
Graph algorithms can perform unsupervised machine learning on graph data. Key
takeaways from this section are as follows:

• Community detection algorithms find densely interconnected sets of entities.
• Neighborhood similarity algorithms find entities who have similar relationships

to others.
• Clustering is grouping by nearness, and similarity is proxy for physical nearness.
• Link prediction uses clues such as neighborhood similarity to predict whether an

edge is likely to exist between two vertices.
• Frequent pattern mining algorithms find patterns of connections which occur

frequently.
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Extracting Graph Features
In the previous section, we showed how you can use graph algorithms to perform
unsupervised machine learning. In most of those examples, we analyzed the graph as
a whole to discover some characteristics, such as communities or frequent patterns.

In this section, you’ll learn how graphs can provide additional and valuable features
to describe and help you understand your data. A graph feature is a characteristic that
is based on the pattern of connections in the graph. A feature can either be local –
attributed to the neighborhood of an individual vertex or edge – or global – pertain‐
ing to the whole graph or a subgraph. In most cases, we are interested in vertex fea‐
tures – characteristics of the neighborhood around a vertex. That’s because vertices
usually represent the real world entities which we want to model with machine learn‐
ing.

When an entity (an instance of a real-world thing) has several features and we
arrange those features in a standard order, we call the ordered list a feature vector.
Some of the methods we’ll look at in this section provide individual features; others
produce entire sets of features. You can concatenate a vertex’s entity properties (the
ones that aren’t based on connections) with its graph features obtained from one or
more of the methods discussed here to make a longer, richer feature vector. We’ll also
look at a special self-contained feature vector called an embedding that summarizes a
vertex’s entire neighborhood.

These features can provide insight as is, but one of their most powerful uses is to
enrich the training data for supervised machine learning. Feature extraction is one of
the key phases in a machine learning pipeline (refer back to Figure 1-1). For graphs,
this is particularly important because traditional machine learning techniques are
designed for vectors, not for graphs. So, in a machine learning pipeline, feature
extraction is also where we transform the graph into a different representation.

In the sections that follow, we’ll look at three key topics: domain-independent fea‐
tures, domain-dependent features, and the exciting developments in graph embed‐
ding.

Domain-Independent Features
If graph features are new to you, the best way to understand them is to look at simple
examples that would work for any graph. Because these features can be used regard‐
less of the type of data we are modeling, we say they are domain-independent. Con‐
sider the graph in Figure 1-6. We see a network of friendships, and we count
occurrences of some simple domain-independent graph features.
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Figure 1-6. Graph with directed friendship edges

Table 1-3 shows the results for four selected vertices (Alex, Chase, Fiona, Justin) and
four selected features.

Table 1-3. Examples of domain-independent features from the graph of Figure 1-6
Number of in-
neighbors

Number of out-neighbors Number of vertices within 2
forward hops

Number of triangles
(ignoring direction)

Alex 0 2 (Bob, Fiona) 6 (B, C, F, G, I, J) 0
Chase 1 (Bob) 2 (Damon, Eddie) 2 (D, E) 1 (Chase, Damon, Eddie)
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3 A hop is the generic unit of distance in a graph, from one vertex to its neighbor. We defined this in Chapter 1.
4 Graphlets were first presented by Nataša Pržulj et al. in "Modeling interactome: scale-free or geometric?“.

5 "Graphlet-based Characterization of Directed Networks“, Sarajlić et al., 2016.
6 "Link Prediction in Dynamic Networks using Graphlet”, Rahmat et al., 2016.

Fiona 2 (Alex, Ivy) 3 (George, Ivy, Justin) 4 (G, I, J, H) 1 (Fiona, George, Ivy)
Justin 1 (Fiona) 0 0 0

You could easily come up with more features, by looking farther than one or two
hops3, by considering generic weight properties of the vertices or edges, and by calcu‐
lating in more sophisticated ways: computing average, maximum, or other functions.
Because these are domain-independent features, we are not thinking about the mean‐
ing of “person” or “friend”. We could change the object types to “computers” and
“sends data to”. Domain-independent features, however, may not be the right choice
for you if there are many types of edges with very different meanings.

Graphlets
Another option for extracting domain-independent features is to use graphlets4.
Graphlets are small subgraph patterns, which have been systematically defined so that
they include every possible configuration up to a given size limit. Figure 1-7 shows all
72 graphlets for subgraphs up to five vertices (or nodes). Note that the figure shows
two types of identifiers: shape IDs (G0, G1, G2, etc.) and graphlet IDs (1, 2, 3, etc.).
Shape G1 encompasses two different graphlets: graphlet 1, when the reference vertex
is on the end of the 3-vertex chain, and graphlet 2, when the reference vertex is in the
middle.

Counting the occurrences of every graphlet pattern around a given vertex provides a
standardized feature vector which can be compared to any other vertex in any graph.
This universal signature lets you cluster and classify entities based on their neighbor‐
hood structure, for applications such as predicting the world trade dynamics of a
nation5 or link prediction in dynamic social networks like Facebook.6
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7 From "Uncovering Biological Network Function via Graphlet Degree Signatures" by Tijana Milenković
and Nataša Pržulj, licensed under CC BY 3.0

Figure 1-7. Graphlets up to five vertices (or nodes) in size7

A key rule for graphlets is that they are the induced subgraph for a set of vertices
within a graph of interest. Induced means that they include ALL the edges that the
base graph has among the selected set of vertices. This rule causes each particular set
of vertices to match at most one graphlet pattern. For example, consider the four per‐
sons Fiona, George, Howard, and Ivy in Figure 1-6. Which shape and graphlet do
they match, if any? It’s shape G7, because those four persons form a rectangle with
one cross connection. They do not match shape G5, the square because of that cross
connection between George and Ivy. While we’re talking about that cross connection,
look carefully at the two graphlets for shape G7, graphlets 12 and 13. Graphlet 13’s
source node is located at one end of the cross connection, just as George and Ivy are.
This means graphlet 13 is one of their graphlets. Fiona and Howard are at the other
corners of the square, which don’t have the cross connection. Therefore they have
graphlet 12 in their graphlet portfolios.

There is obviously some overlap between the ad hoc features we first talked about
(e.g., number of neighbors) and graphlets. Suppose a vertex A has three neighbors B,
C, and D, as shown in Figure 1-8. However, we do not know about any other connec‐
tions. What do we know about its graphlets?
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• It exhibits the graphlet 0 pattern three times. Counting the occurrences is impor‐
tant.

• Now consider subgraphs with three vertices.We can define three different sub‐
graphs containing A: (A, B, C), (A, B, D), and (A, C, D). Each of those three‐
somes satisfies either graphlet 2 or 3. Without knowing about the connections
among B, C, and D (the dotted-line edges in the figure), we can be more specific.

• Considering all four vertices, we might be tempted to say they match graphlet 7.
Since there might be other connections between B, C, and D, it might actually be
a different graphlet. Which one? Graphet 11 if there’s one peripheral connection,
graphlet 13 if it’s two connections, or graphlet 14 if it’s all three possible connec‐
tions.

Figure 1-8. Immediate neighbors and graphlet implications

The advantage of graphlets is that they are thorough and methodical. Checking for all
graphlets up to 5-node size is equal to considering all the details of the source vertex’s
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8 These algorithms were introduced in the Analyze section of the book.

4-hop neighborhood. You could run an automated graphlet counter without spend‐
ing time and money to design custom feature extraction. The disadvantage of graph‐
lets is that they can require a lot of computational work, and it might be more
productive to focus on a more selective set of domain-dependent features. We’ll cover
these types of features shortly.

Graph Algorithms
Here’s a third option for extracting domain-independent graph features: graph algo‐
rithms! In particular, the centrality and ranking algorithms which we discussed in the
Analyze section of the book work well because they systematically look at everything
around a vertex and produce a score for each vertex. Figures 10-9 and 10-10 show the
PageRank and closeness centrality8 scores respectively for the graph presented earlier
in Figure 1-7. For example, Alex has a PageRank score of 0.15 while Eddie has a Pag‐
eRank score of 1. This tells us that Eddie is valued by his peers much more than Alex.
Eddie’s ranking is due not only to the number of connections, but also to the direc‐
tion of edges. Howard, who like Eddie has two connections and is at the far end of the
rough “C” shape of the graph, has a PageRank score of only 0.49983 because one edge
comes in and the other goes out.
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Figure 1-9. PageRank scores for the friendship graph.

The closeness centrality scores in Figure 1-10 tell a completely different story. Alex
has a top score of 0.47368 because she is at the middle of the C. Eddie and Howard
have scores at or near the bottom, 0.2815 and 0.29032 respectively, because they are at
the ends of the C.
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Figure 1-10. Closeness centrality scores for the friendship graph

The main advantage of domain-Independent feature extraction is its universality:
generic extraction tools can be designed and optimized in advance, and the tools can
be applied immediately on any data. Its unguided approach, however, can make it a
blunt instrument.

Domain-independent feature extraction has two main drawbacks. Because it doesn’t
pay attention to what type of edges and vertices it considers, it can group together
occurrences that have the same shape but have radically different meanings. The sec‐
ond drawback is that it can waste resources computing and cataloging features which
have no real importance or no logical meaning. Depending on your use case, you may
want to focus on a more selective set of domain-dependent features.
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Domain-Dependent Features
A little bit of domain knowledge can go a long way towards making your feature
extraction smarter and more efficient.

When extracting domain-dependent features, the first thing you want to do is pay
attention to the vertex types and edge types in your graph. It’s helpful to look at a dis‐
play of your graph’s schema. Some schemas break down information hierarchically
into graph paths, such as City-(IN)-State-(IN)-Country or Day-(IN)-Month-(IN)-
Year. This is a graph-oriented way of indexing and pre-grouping data according to
location or date. This is the case in a graph model for South Korean COVID-19 con‐
tact tracing data, shown in Figure 1-11. While City-to-County and Day-to-Year are
each 2-hop paths, those paths are simply baseline information and do not hold the
significance of a 2-hop path like Patient-(INFECTED_BY)-Patient-(INFECTED_BY)-
Patient.

You can see how the graphlet approach and other domain-independent approaches
can provide confusing results when you have mixed edge types. A simple solution is
to take a domain-semi-independent approach by considering only certain vertex
types and edge types when looking for features. For example, if looking for graphlet
patterns, you might want to ignore the month vertices and their connecting edges.
You might still care about the Year of birth of Patients and the (exact) Day on which
they traveled, but you don’t need the graph to tell you that each Year contains twelve
Months.
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Figure 1-11. Graph schema for South Korean COVID-19 contact tracing data

With this vertex- and edge-type awareness you can refine some of the domain-
independent searches. For example, while you can run PageRank on any graph, the
scores will only have significance if all the edges have the same or relatively similar
meanings. It would not make sense to run PageRank on the entire COVID-19 contact
tracing graph. It would make sense, however, to consider only the Patient vertices and
INFECTED_BY edges. PageRank would then tell you who was the most influential
Patient in terms of causing infection: Patient zero, so to speak.

In this type of scenario, you also want to apply your understanding of the domain to
think of small patterns with two or more edges of specific types that indicate some‐
thing meaningful. For this COVID-19 contact tracing schema, the most important
facts are Infection Status (InfectionCase), Who (Patient), Where (City and TravelE‐
vent) and When (Day_). Paths that connect these are important. A possible feature is
“number of travel events made by Patient P in March 2020.” A more specific feature is
“number of Infected Patients in the same city as Patient P in March 2020.” That sec‐
ond feature is the type of question we posed in the Analyze section of our book. You’ll
find examples of vertex and edge type-specific PageRank and domain-dependent pat‐
tern queries in the TigerGraph Cloud Starter Kit for COVID-19.

34 | Chapter 1: Graph-Powered Machine Learning Methods

https://www.tigergraph.com/starterkits/


Let’s pause for a minute to reflect on your immediate goal for extracting these fea‐
tures. Do you expect these features to directly point out actionable situations, or are
you building a collection of patterns to feed into a machine learning system? The
machine learning system will then tell you which features matter, to what degree, and
in what combination. If you’re doing the latter, which is our focus for this chapter,
then you don’t need to build overly complex features. Instead, focus on building block
features. Try to include some that provide a number (e.g., how many travel events) or
a choice among several possibilities (e.g., city most visited).

To provide a little more inspiration for using graph-based features, here are some
examples of domain-dependent features used in real-world systems to help detect
financial fraud:

• How many shortest paths are there between a loan applicant and a blacklisted
entity, up to a maximum path length (because very long paths represent negligi‐
ble risk)?

• How many times has the loan applicant’s mailing address, email address, or
phone number been used by differently named applicants?

• How many credit card charges has this card made in the last 10 minutes?

While it is easy to see that high values on any of these measures make it more likely
that a situation involves financial misbehavior, our goal is to be more precise and
more accurate. We want to know what are the threshold values, and what about com‐
binations of factors? Being precise cuts down on false negatives (missing cases of real
fraud) and cuts down on false positives (labeling a situation as fraud when it really
isn’t). False positives are doubly damaging. They hurt the business because they are
rejecting an honest business transaction, and they hurt the customer who has been
unjustly labeled a crook.

Graph Embeddings: A Whole New World
Our last approach to feature extraction is graph embedding, a hot topic of research
and discussion of late. Some authorities may find it unusual that I am classifying
graph embedding as a type of feature extraction. Isn’t graph embedding a kind of
dimensionality reduction? Isn’t it representation learning? Isn’t it a form of machine
learning itself? All of those are true. Let’s first define what is a graph embedding.

An embedding is a representation of a topological object in a particular system such
that the properties we care about are preserved (or approximated well). The last part
“the properties we care about are preserved” speaks to why we use embeddings. A
well-chosen embedding makes it more convenient to see what we want to see.

Here are several examples to help illustrate the meaning of embeddings:
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• The earth is a sphere but we print world maps on flat paper. The representation
of the earth on paper is an embedding. There are several different standard repre‐
sentations or embeddings of the earth as a map. Figure 1-12 shows some exam‐
ples.

• Prior to the late 2010s, when someone said graph embedding, they probably
meant something like the earth example. To represent all the connections in a
graph without edges touching one another, you often need three or more dimen‐
sions. Whenever you see a graph on a flat surface, it’s an embedding, as in
Figure 1-13. Moreover, unless your data specifies the location of vertices, then
even a 3-D representation is an embedding because it’s a particular choice about
the placement of the vertices. From a theoretical perspective, it takes up to n-1
dimensions to represent a graph with n vertices: huge!

• In natural language processing (NLP), a word embedding is a sequence of scores
(i.e., a feature vector) for a given word (see Figure 1-14). There is no natural
interpretation of the individual scores, but an ML program sets the scores so that
words that tend to occur near each other in training documents have similar
embeddings. For example, “machine” and “learning” might have similar embed‐
dings. A word embedding is not convenient for human use, but it is very conve‐
nient for computer programs that need a computational way of understanding
word similarities and groupings.
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9 From Battersby, S. (2017). Map Projections. The Geographic Information Science & Technology Body of Knowl‐
edge (2nd Quarter 2017 Edition), John P. Wilson (ed.). DOI: 10.22224/gistbok/2017.2.7

Figure 1-12. Two embeddings of the earth’s surface onto 2-D space9

Figure 1-13. Some graphs can be embedded in 2-D space without intersecting edges
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Figure 1-14. Word embedding

In recent years, graph embedding has taken on a new meaning, analogous to word
embedding. We compute one or more feature vectors to approximate the graph’s
neighborhood structure. In fact, when people say graph embedding, they often mean
vertex embedding: computing a feature vector for each vertex in the graph. A vertex’s
embedding tells us something about how it connects to others. We can then use the
collection of vertex embeddings to approximate the graph, no longer needing to con‐
sider the edges. There are also methods to summarize the whole graph as one embed‐
ding. This is useful for comparing one graph to another. In this book, we will focus
on vertex embeddings.

Figure 1-15 shows an example of a graph (a) and portion of its vertex embedding (b).
The embedding for each vertex (a series of 64 numbers) describes the structure of its
neighborhood without directly mentioning any of its neighbors.
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10 Visualized partitioning of Zachary’s Karate Club, licensed under CC BY_SA 4.0

Figure 1-15. (a) Karate club graph10 and (b) 64-element embedding for two of its vertices
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Let’s return to the question of classifying graph embeddings. As we will see, the tech‐
nique of graph embedding requires unsupervised learning, so it can also be consid‐
ered a form of representation learning. What graph embeddings give us is a set of
feature vectors. For a graph with a million vertices, a typical embedding vector would
be a few hundred elements long, a lot less than the upper limit of one million dimen‐
sions. Therefore, graph embeddings also represent a form of dimensionality reduc‐
tion. And, we’re using graph embeddings to get feature vectors, so they’re also a form
of feature extraction.

Does any feature vector qualify as an embedding? That depends on whether your
selected features are telling you what you want to know. Graphlets come closest to the
learned embeddings we are going to examine because of the methodical way they
deconstruct neighborhood relationships.

Random Walk-based Embeddings
One of the best known approaches for graph embedding is to use random walks to
get a statistical sample of the neighborhood surrounding each vertex v. A random
walk is a sequence of connected hops in a graph G. The walk starts at some vertex v. It
then picks a random neighbor of v and moves there. It repeats this selection of ran‐
dom neighbors until it is told to stop. In an unbiased walk, there is an equal probabil‐
ity of selecting any of the outgoing edges.

Random walks are great because they are easy to do and gather a lot of information
efficiently. All feature extraction methods we have looked at before require following
careful rules about how to traverse the graph; graphlets are particularly demanding
due to their very precise definitions and distinctions from one another. Random
walks are carefree. Just go.

For the example graph in Figure 1-16, suppose we start a random walk at vertex A.
There is an equal probability of 1 in 3 that we will next go to vertex B, C, or D. If you
start the walk at vertex E, there is a 100% chance that the next step will be to vertex B.
There are variations of the random walk rules where there’s a chance of staying in
place, reversing your last step, jumping back to the start, or jumping to a random ver‐
tex.
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Figure 1-16. An ordinary graph for leisurely walks

Each walk can be recorded as a list of vertices, in the order in which they were visited.
A-D-H-G-C is a possible walk. You can think of each walk as a signature. What does
the signature tell us? Suppose that walk W1 starts at vertex 5 and then goes to 2. Walk
W2 starts at vertex 9 and then goes to 2. Now they are both at 2. From here on, they
have exactly the same probabilities for the remainder of their walks. Those individual
walks are unlikely to be the same, but if there is a concept of a “typical walk” averaged
over a sampling of several walks, then yes, the signatures of 5 and 9 would be similar.
All because 5 and 9 share a neighbor 2. Moreover, the “typical walk” of vertex 2 itself
would be similar, except offset by one step.

It turns out that these random walks gather neighborhood information much in the
same way that SimRank and RoleSim gather theirs. The difference is that those role
similarity algorithms considered all paths (by considering all neighbors), which is
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computationally expensive. SimRank and RoleSim differ from one another in how
they aggregate the neighborhood information. Let’s take a look at two random-walk
based graph embedding algorithms that use a completely different computational
method, one borrowed from neural networks.

DeepWalk.    The DeepWalk algorithm (Perozzi et al. 2014) collects k random walks of
length λ for every vertex in the graph. If you happen to know the word2vec algorithm
(Mikolov et al. 2013), the rest is easy. Treat each vertex like a word and each walk like
a sentence. Pick a window width w for the skip-grams and a length d for your embed‐
ding. You will end up with an embedding (latent feature vector) of length d for each
vertex. The DeepWalk authors found that k=30 walks, walk length λ=40, with win‐
dow width w=10 and embedding length d=64 worked well for their test graphs. Your
results may vary. Figure 1-17(a) shows an example of a random walk, starting at ver‐
tex C and with a length of 16, which is 15 steps or hops from the starting point. The
shadings will be explained when we explain skip-grams.

Figure 1-17. (a) Random walk vector and (b) a corresponding skip-gram

We assume you don’t know word2vec, so we’ll give a high-level explanation, enough
so you can appreciate what is happening. This is the conceptual model. The actual
algorithm plays a lot of statistical tricks to speed up the work. First, we construct a
simple neural network with one hidden layer, as shown in Figure 1-18. The input
layer accepts vectors of length n, where n = number of vertices. The hidden layer has
length d, the embedding length because it is going to be learning the embedding vec‐
tors. The output layer also has length n.
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Figure 1-18. Neural network for DeepWalk

Each vertex needs to be assigned a position in the input and output layer, e.g., vertex
A is at position 1, vertex B is at position 2, etc. Between the layers are two meshes of n
✕ d connections, from each element in one layer to each element in the next layer.
Each edge has a random weight initially, but we will gradually adjust the weights of
the first mesh.

Start with one walk for one starting vertex. At the input, we represent the vertex using
one-hot encoding. The vector element that corresponds to the vertex is set to 1; all
other elements are set to 0. We are going to train this neural network to predict the
neighborhood of the vertex given at the input.

Applying the weights in the first mesh to our one-hot input, we get a weighted vertex
in the hidden layer. This is the current guess for the embedding of the input vertex.
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Take the values in the hidden layers and multiply by the weights of the second mesh
to get the output layer values. You now have a length-n vector with random weights.

We’re going to compare this output vector with a skip-gram representation of the
walk. This is where we use the window parameter w. For each vertex in the graph,
count how many times it appears within w-steps before or after the input vertex v.
We’ll skip the normalization process, but your final skip-gram vector expresses the
relative likelihood that each of the n vertices is near vertex v in this walk. Now we’ll
explain the result of Figure 1-17. Vertex C was the starting point for the random walk;
we’ve used dark shading to highlight every time we stepped on vertex C. The light
shading shows every step that is within w = 2 steps of vertex C. Then, we form the
skip-gram in (b) by counting how many times we set foot on each vertex within the
shaded zones. For example, vertex G was stepped on twice, so the skip-gram has 2 in
the position for G. This is a long walk on a small graph, so most vertices were stepped
on within the windows. For short walks on big graphs, most of the values will be 0.

Our output vector was supposed to be a prediction of this skip-gram. Comparing
each position in the two vectors, if the output vector’s value is higher than the skip-
gram’s value, then lower the corresponding weight in the input mesh. If the value was
lower, then raise the corresponding weight.

You’ve processed one walk. Repeat this for one walk of each vertex. Now repeat for a
second walk of each vertex, until you’ve adjusted your weights for k ✕ n walks. You’re
done! The weights of the first n ✕ d mesh are the length-d embeddings for your n
vectors. What, about the second mesh? Strangely, we were never going to directly use
the output vectors, so we didn’t bother to adjust its weight.

Here is how to interpret and use a vertex embedding:

• For neural networks in general, you can’t point to a clear real-world meaning of
the individual elements in the latent feature vector.

• Based on how we trained the network, though, we can reason backwards from
the skip-grams, which represent the neighbors around a vertex: vertices that have
similar neighborhoods should have similar embeddings.

• If you remember the example earlier about two paths that were offset by one step,
note that those two paths would have very similar skip-grams. So, vertices that
are close to each other should have similar embeddings.

One critique of DeepWalk is that its uniformly random walk is too random. In partic‐
ular, it may wander far from the source vertex before getting an adequate sample of
the neighborhoods closer to the source. One way to address that is to include a prob‐
ability of resetting the walk by magically teleporting back to the source vertex and
then continuing with random steps again, as in Zhou et al. 2021. This is known as
“random walk with restart”.
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Node2vec.    Another method which has already gained popularity is node2vec [Grover
and Leskovec 2016]. It uses the same skip-gram training process as DeepWalk, but it
gives the user two adjustment parameters to control the direction of the walk: go far‐
ther (depth), go sideways (breadth), or go back a step. Farther and back seem obvi‐
ous, but what exactly does sideways mean?

Suppose we start at vertex A of the graph in Figure 1-19. Its neighbors are vertices B,
C, and D. Since we are just starting, any of the choices would be moving forward.
Let’s go to vertex C. For the second step, we can choose from any of vertex C’s neigh‐
bors: A, B, F, G, or H.

Figure 1-19. Illustrating the biased random walk with memory used in node2vec

If we remember what our choices were in our previous step, we can classify our cur‐
rent set of neighbors into three groups: back, sideways, and forward. We also assign a
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weight to each connecting edge, which represents the unnormalized probability of
selecting that edge.

Back
In our example: vertex A. Edge weight = 1/p.

Sideways
These are the vertices that were available last step and are available this step (e.g.,
the union of the two sets of vertices. So, they represent a second chance to visit a
different neighbor of where you were previously. In our example: vertex B. Edge
weight = 1.

Forward
There are all the vertices that don’t return or go sideways. In our example: verti‐
ces F, G, and H. Edge weight = 1/q.

If we set p = q = 1, then all choices have equal probability, so we’re back to an
unbiased random walk. If p < 1, then returning is more likely than going sideways. If
q < 1, then each of the forward (depth) options is more likely than sideways
(breadth). Returning also keeps the walk closer to home (e.g., similar to breadth-first-
search), because if you step back and then step forward randomly, you are trying out
the different options in your previous neighborhood.

This ability to tune the walk makes node2vec more flexible than DeepWalk, which
results in better models in many cases.

Besides the random walk approach, there are several other techniques for graph
embedding, each with their advantages and disadvantages: matrix factorization, edge
reconstruction, graph kernel, and generative models. Though already a little dated, A
Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications,
by Cai et al. provides a thorough overview with several accessible tables which com‐
pare the features of different techniques.

Summary
Graphs can provide additional and valuable features to describe and understand your
data. Key takeaways from this section are as follows:

• A graph feature is a characteristic that is based on the pattern of connections in
the graph

• Graphlets and centrality algorithms provide domain-independent features for
any graph.

• Applying some domain knowledge to guide your feature extraction leads to more
meaningful features.
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• Machine learning can produce vertex embeddings which encode vertex similarity
and proximity in terms of compact feature vectors.

• Random walks are a simple way to sample a vertex’s neighborhood.

Graph Neural Networks
In the popular press, it’s not AI unless it uses a neural network, and it’s not machine
learning unless it uses deep learning. Neural networks were originally designed to
emulate how the human brain works, but they evolved to address the capabilities of
computers and mathematics. The predominant models assume that your input data is
in a matrix or tensor; it’s not clear how to present and train the neural network with
interconnected vertices. Yet, are there graph-based neural networks? Yes!

Graph neural networks (GNNs) are conventional neural networks with an added
twist for graphs. Just as there are several variations of neural networks, there are sev‐
eral variations of GNNs. The simplest way to include the graph itself into the neural
network is through convolution.

Graph Convolutional Networks
In mathematics, convolution is how two functions affect the result if one acts on the
other in a particular way. It is often used to model situations in which one function
describes a primary behavior and another function describes a secondary effect. For
example, in image processing, convolution takes into account neighboring pixels to
improve identification of boundaries and to add artificial blur. In audio processing,
convolution is used to both analyze and synthesize room reverberation effects. A con‐
volutional neural network (CNN) is a neural network that includes convolution in
the training process. For example, you could use a CNN for facial recognition. The
CNN would systematically take into account neighboring pixels, an essential duty
when analyzing digital images.

A graph convolutional network (GCN) is a neural network that uses graph traversal
as a convolution function during the learning process. While there were some earlier
related works, the first model to distill the essence of graph convolution into a simple
but powerful neural network was presented in 2017 with "Semi-Supervised Classifica‐
tion with Graph Convolutional Networks" by Thomas Kipf and Max Welling.

For graphs, we want the embedding for each vertex to include information about the
relationships to other vertices. We can use the principle of convolution to accomplish
this. Figure 1-20 shows a simple convolution function, with a general model at top
and a more specific example at bottom.
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Figure 1-20. Convolution using neighbors of a vertex

In part (a) of the figure, the primary function is features(v): given a vertex v, output
its feature vector. The convolution is to combine the features of v with the features of
all of the neighbors of v: u1, u2,...,uN. If the features are numeric, we can just add
them. The result is the newly convolved features of v. In part (b), we set v = D. Vertex
D has two neighbors, A and H. We insert one more step after summing the feature
vectors: divide by the degree of the primary vertex. Vertex D has 2 neighbors, so we
divide by 2. This regularizes the output values so that they don’t keep getting bigger
and bigger. (Yes, technically we should divide by deg(v)+1, but the simpler version
seems to be good enough.)

Let’s do a quick example:

features[0](D) = [3, 1 ,4, 1]
features[0](A) = [5, 9, 2, 6]
features[0](H) = [5, 3, 5, 8]
features[1](D) = [6.5, 6.5, 5.5, 7.5]

By having neighbors share their feature values, this simple convolution function per‐
forms selective information sharing: it determines what is shared (features) and by
whom (neighbors). A neural network which uses this convolution function will tend
to evolve according to these maxims:

• Vertices which share many neighbors will tend to be similar.
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• Vertices which share the same initial feature values will tend to be similar.

These properties are reminiscent of random-walk graph embeddings, aren’t they? But
we won’t be using any random walks.

How do we take this convolution and integrate it into a neural network? Take a look
at Figure 1-21.

Figure 1-21. Two-layer graph convolutional network

This two-layer network flows from left to right. The input is the feature vectors for all
of the graph’s vertices. If the feature vectors run horizontally and we stack the vertices
vertically, then we get an n ✕ f matrix, where f is the number of features. Next we
apply the adjacency-based convolution. We then apply a set of randomized weights
(similar to what we did with random-walk graph embedding networks) to merge and
reduce the features to an embedding of size h1. Typically h1 < f. Before storing the
values in the embedding matrix, we apply an activation function (indicated by the
blocky “S” in a circle) which acts as a filter/amplifier. Low values are pushed lower,
and high values are pushed higher. Activation functions are used in most neural net‐
works.

Because this is a two-layer network, we repeat the same steps. The only differences
are that this embedding may have a different size, where typically h2 ≤ h1, and this
weight mesh has a different set of random weights. If this is the final layer, then it’s
considered the output layer with the output results. By having two layers, the output
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embedding for each vertex takes into account the neighbors within two hops. You can
add more layers to consider deeper neighbors. Two or three layers often provide the
best results. With too many layers, the radius of each vertex’s neighborhood becomes
so large that it overlaps significantly even with the neighborhoods of unrelated verti‐
ces.

Our example here is demonstrating how a GCN can be used in unsupervised learning
mode. No training data or target function was provided; we just merged features of
vertices with their neighbors. Surprisingly, you can get useful results from an unsu‐
pervised, untrained GCN. The authors of GCN experimented with a 3-layer
untrained GCN, using the well-known Karate Club dataset.They set the output layer’s
embedding length of 2, so that they could interpret the two values as coordinate
points. When plotted, the output data points showed community clustering which
matched the known communities in Zachary’s Karate Club.

The GCN architecture is general enough to be used for unsupervised, supervised,
semi-supervised, or even reinforcement learning. The only difference between a GCN
and a vanilla feed-forward NN is the addition of the step to aggregate the features of a
vector with those of its neighbors. Figure 1-22 shows a generic model for how neural
networks tune their weights. The graph convolution in GCN affects only the block
labeled Forward Propagation Layers. All of the other parts (input values, target val‐
ues, weight adjustment, etc.) are what determine what type of learning you are doing.
That is, the type of learning is decided independently from your use of graph convo‐
lution.

Figure 1-22. Generic model for responsive learning in a neural network
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Attention neural networks use a more advanced form of feedback and adjustment.
The details are beyond the scope of this book, but graph attention neural networks
(GATs) can tune the weight (aka focus the attention) of each neighbor when adding
them together for convolution. That is, a GAT performs a weighted sum instead of a
simple sum of neighbor’s features, and the GAT trains itself to learn the best weights.
When applied to the same benchmark tests, GAT outperforms GCN slightly.

Matrix Algebra Formulation
If you like to think in terms of matrices, we can express the convolution process in
terms of three simple, standard matrices for any graph: the adjacency matrix A, the
identity matrix I, and the degree matrix D. (Feel free to skip this section is this doesn’t
sound like you.)

Matrix A expresses the connectivity of the graph. Number the vertices 1 to n, and
number the rows and columns similarly. The value A(i, j) = 1 if there is an edge from
vertex i to vertex j; otherwise A(i,j) is 0. The identity matrix says, “I am myself.” I(i, j)
= 1 if i = j; otherwise it is 0. It looks like a diagonal line from upper left to lower right.
The matrix in Figure 1-23 is (A + I). Note that the 1’s in row i tell us the convolution
function for vertex i.

Figure 1-23. A graph and matrix representing the graph’s adjacency and identity: (A+I)

What about the regularization? With matrices, instead of performing division, we do
multiplication by the inverse matrix. The matrix we want is the degree matrix D,
where D(i, j) = degree(i) if i = j; otherwise it is 0. The degree matrix of the graph of
Figure 1-16 is shown in the left half of Figure 1-24. At the right is the inverse matrix
D-1.
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Figure 1-24. The degree matrix D and itself inverse matrix D-1

We can express the computation from layer H0 to the next layer H1 as follows:

H1 = σ D−1 A + 1 H0W1

where σ is the activation function, and W is the weight mesh. In Kipf and Welling’s
paper, they made a tweak to provide a more balanced regularization:

H1 = σ D−1/2 A + 1 D−1/2H0W1

GraphSAGE
One limitation of the basic GCN model is that it does a simple averaging of vertex +
neighbor features. It seems we would want some more control and tuning of this con‐
volution. Also, large variations in the number of neighbors for different vertices may
lead to training difficulties. To address this limitation, Hamilton et al. presented
GraphSAGE in 2017 in their paper "Inductive Representation Learning on Large
Graphs“. Like GCN, this technique also combines information from neighbors, but it
does it a little differently. In order to standardize the learning from neighbors,
GraphSAGE samples a fixed number of neighbors from each vertex. Figure 1-25
shows a block diagram of GraphSAGE, with sampled neighbors.
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Figure 1-25. Block diagram of GraphSAGE

With GraphSAGE, the features of the neighbors are combined according to a chosen
aggregation function. The function could be addition, as in GCNs. Any order-
independent aggregation function could be used; LSTM with random ordering and
max-pooling work well. The source vertex is not included in the aggregation as it is in
GCN; instead, the aggregated feature vectors and the source vertex’s feature vector are
concatenated to make a double-length vector. We then apply a set of weights to mix
the features together, apply an activation function, and store as the next layer’s repre‐
sentation of the vertices. This series of sets constitutes one layer in the neural network
and the gathering of information within one hop of each vertex. A GraphSAGE net‐
work has k layers, each with its own set of weights. GraphSAGE proposes a loss func‐
tion that rewards nearby vertices if they have similar embeddings, while rewarding
distant vertices if they have dissimilar embeddings.

Besides training on the full graph, as you would with GCN, you can train GraphS‐
AGE with only a sample of the vertices. The fact that GraphSAGE’s aggregation func‐
tions uses equally-sized samples of neighborhoods means that it doesn’t matter how
you arrange the inputs.That freedom of arrangement is what allows you to train with
one sample and then test or deploy with a different sample. Because it can learn from
a sample, GraphSAGE performs inductive learning. In contrast, GCN directly uses the
adjacency matrix, which forces it to use the full graph with the vertices arranged in a
particular order. Training with the full data and learning a model for only that data is
transductive learning.

Graph Neural Networks | 53



Whether learning from a sample will work on your particular graph depends on
whether your graph’s structure and features follow global trends, such that a random
subgraph looks similar to another subgraph of similar size. For example, one part of a
forest may look a lot like another part of a forest. For a graph example, suppose you
have a Customer 360 graph including all of a customer’s interactions with your sales
team, website, events, their purchases, and all other profile information you have
been able to obtain. Last year’s customers are rated based on the total amount and
frequency of their purchases. It is reasonable to expect that if you used GraphSAGE
with last year’s graph to predict the customer rating, it should do a decent job of pre‐
dicting the ratings of this year’s customers. Table 1-4 summarizes all the similarities
and differences between GCN and GraphSAGE that we have presented.

Table 1-4. Comparison of GCN and GraphSAGE traits
GCN GraphSAGE

Neighbors for aggregation All sample of n neighbors
Aggregation function mean several options
Aggregating a vertex with neighbors? aggregated with others concatenated to others
Do weights need to be learned? not for unsupervised transductive model yes, for inductive model
Unsupervised? yes yes
Supervised? with modification with modification
Can be trained on a sample of vertices no yes

Summary
Graph-based neural networks put graphs into the mainstream of machine learning.
Key takeaways from this section are as follows:

• The graph convolutional neural network (GCN) enhances the vanilla neural net‐
work by averaging together the feature vectors of each vertex’s neighbors with its
own features during the learning process.

• GraphSAGE makes two key improvements to the basic GCN: vertex and neigh‐
borhood sampling, and keeping features of vectors separate from those of its
neighbors .

• GCN learns transductively (uses the full data to learn only about that data)
whereas GraphSAGE learns inductively (uses a data sample to learn a model that
can apply to other data samples).

• The modular nature of neural networks and graph enhancements mean that the
ideas of GCN and GraphSAGE can be transferred to many other flavors of neural
networks.
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Comparing Graph Machine Learning Approaches
This chapter has covered many different ways to learn from graph data, but it only
scratched the surface. Our goal was not to present an exhaustive survey, but to pro‐
vide a framework from which to continue to grow. We’ve outlined the major cate‐
gories of and techniques for graph-powered machine learning, we’ve described what
characterizes and distinguishes them, and we’ve provided simple examples to illus‐
trate how they operate. It’s worthwhile to briefly review these techniques. Our goal
here is not only to summarize but also to provide you with guidance for selecting the
right techniques to help you learn from your connected data.

Use Cases for Machine Learning Tasks
Table 1-5 pulls together examples of use cases for each of the major learning tasks.
These are the same basic data mining and machine learning tasks you might perform
on any data, but the examples are particularly relevant for graph data.

Table 1-5. Use cases for graph data learning tasks
Task Use case examples
Community detection Delineating social networks

Finding a financial crime network
Detecting an biological ecosystem or chemical reaction network
Discovering a network of unexpectedly interdependent components or process, such as software
procedures or legal regulations

Similarity Abstraction of physical closeness, inverse of distance
Prerequisite for clustering, classification, and link prediction
Entity resolution - finding two online identities that probably refer to the same real-world person
Product recommendation or suggested action
Identifying persons who perform the same role in different but analogous networks

Find unknown patterns Identifying the most common “customer journeys” on your website or in your app
Discovering that two actions - planning a summer vacation and
Once current patterns are identified, then noticing changes

Link Prediction Predicting someone’s future purchase or willingness to purchase
Predicting that business or personal relationship exists, even though it is not recorded in the data

Feature Extraction Enriching your customer data with graph features, so that your ML training to categorize and
model your customers will be more successful

Embedding Transforming a large set of features to a more compact set, for more efficient computation
Classification (predicting
a category)

Given some past examples of fraud, create a model for identifying new cases of fraud
Predicting categorical outcomes for future vaccine patients, based on test results of past patients

Regression (predicting a
numerical value)

Predicting weight loss for diet program participants, based on results of past participants
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Once you have identified what type of task you want to perform, consider the avail‐
able graph-based learning techniques, what they provide, and their key strengths and
differences.

Graph-based Learning Methods for Machine Learning Tasks
Table 1-6 lists the graph algorithms and feature extraction methods which we
encountered in the chapter. Table 1-7 compares graph neural network methods.

Table 1-6. Features of graph-based learning methods
Task Graph-based Learning

Methods
Comments

Community detection connected components one connection to the community is enough
k-core at least k connections to other community members
modularity optimization,
e.g. Louvain

relatively higher density of connections inside than between
communities

Similarity Jaccard neighborhood
similarity

counts how many relationships in common, for nonnumeric data

cosine neighborhood
similarity

compares numeric or weighted vectors of relationships

role similarity defines similarity recursively as having similar neighbors
Find unknown patterns frequent pattern mining starts with small patterns and builds to larger patterns
Domain- independent
feature extraction

graphlets systematic list of all possible neighborhood configurations
PageRank rank is based on the number and rank of in-neighbors, for directed

graphs among vertices of the same type
closeness centrality closeness = average distance to any other vertex
betweenness centrality how often a vertex lies on the shortest path between any two

vertices; slow to compute
Domain- dependent feature
extraction

searching for patterns
relevant to your domain

custom effort by someone with domain knowledge

Dimensionality reduction
and embedding

DeepWalk embeddings will be similar if the vectors have similar random
walks, considering nearness and role; more efficient than SimRank

node2vec DeepWalk with directional tuning of the random walks, for greater
tuning

Graph Neural Networks: Summary and Uses
The graph neural networks presented in this chapter not only are directly useful in
many cases but also templates to show more advanced data scientists how to trans‐
form any neural network technique to include graph connectivity in the training. The
key is the convolution step, which takes the features of neighboring vertices into
account. All of the graph neural network approaches presented can be used for either
unsupervised or supervised learning.
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Table 1-7. Graph neural networks
Name Description Uses
Graph Convolutional
Network (GCN)

Convolution: average of neighbor’s
features

Clustering or classification on a particular graph

GraphSAGE Convolution: average of a sample
of neighbor’s features

learning a representative model on a sample of a graph, in
addition to clustering or classification

Graph Attention
Network (GAT)

Convolution: weighted average of
neighbor’s features

clustering, classification, and model learning; added tuning
and complexity by learning weights for the convolution

Chapter Summary
Graphs and graph-based algorithms contribute to several stages of the machine learn‐
ing pipeline: data acquisition, data preparation, feature extraction, dimensionality
reduction, and model training. As data scientists know, there is no golden ticket, no
single technique that solves all their problems. Instead, you work to acquire tools for
your toolkit, develop the skills to use your tools well, and gain an understanding
about when to use them.
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CHAPTER 2

Entity Resolution Revisited

A note for Early Release readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 11th chapter of the final book.

This chapter uses entity resolution for a streaming video service as an example of
unsupervised machine learning with graph algorithms. After completing this chapter,
you should be able to:

• Name the categories of graph algorithms which are appropriate for entity resolu‐
tion as unsupervised learning.

• List three different approaches for assessing the similarity of entities.
• Understand how parameterized weights can adapt entity resolution to be a super‐

vised learning task.
• Interpret a simple GSQL FROM clause and have a general understanding of

ACCUM semantics.
• Set up and run a TigerGraph Cloud Starter Kit using GraphStudio.

Goal: Identify Real-World Users and Their Tastes
The streaming video on demand (SVoD) market is big business. Accurate estimates of
the global market size are hard to come by, but the most conservative estimate may be

59



1 "Video Streaming Market Report“, Grand View Research, February 2021
2 "Video Streaming (SVoD) Report“, Statista.com
3 "Video Streaming Market Report“, Grand View Research, February 2021

$50 billion in 20201 with annual growth rates ranging from 11%2 to 21%3 for the next
five years or so. Movie studios, television networks, communication networks, and
tech giants have been merging and reinventing themselves, in hopes of becoming a
leader in the new preferred format for entertainment consumption: on-demand digi‐
tal entertainment, on any video-capable device.

To succeed, SVoD providers need to have the content to attract and retain many mil‐
lions of subscribers. Traditional video technology (movie theaters and broadcast tele‐
vision) limited the provider to offering only one program at a time per venue or per
broadcast region. Viewers had very limited choice, and providers selected content
that would appeal to large segments of the public. Home video on VHS tape and
DVD introduced personalization; wireless digital video on demand on any personal
device has put the power in the hands of the consumer.

Providers no longer need to appeal to the masses. On the contrary, the road to suc‐
cess is microsegmentation: to offer something for everyone. The SVoD giants are
assembling sizable catalogs of existing content, as well as spending billions of dollars
on new content. The volume of options creates several data management problems.
With so many shows available, it is very hard for users to browse. Providers must cat‐
egorize the content, categorize users, and then recommend shows to users. Good rec‐
ommendations increase viewership and satisfaction.

While predicting customers’ interests is hard enough, the streaming video industry
also needs to overcome a multifaceted entity resolution problem. Entity resolution,
you may recall, is the task of identifying two or more entities in a dataset which refer
to the same real-world entity, and then linking or merging them together. In today’s
market, streaming video providers face at least three entity resolution challenges.
First, each user may have multiple different authorization schemes, one for each type
of device they use for viewing. Second, corporate mergers are common, which
require merging the databases of the constituent companies. For example, Disney+
combines the catalogs of Disney, Pixar, Marvel, and National Geographic Studios.
HBO Max brings together HBO, Warner Bros., and DC Comics. Third, SVoD provid‐
ers may form a promotional, affiliate, or partnership arrangement with another com‐
pany: a customer may be able to access streaming service A because they are a
customer of some other service B. For example, customers of AT&T fiber internet
service may qualify for free HBO Max service.
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Solution Design
Before we can design a solution, let’s start with a clear statement of the problem we
want to solve.

Title: Problem Statement
Each real-world user may have multiple digital identities. The goal
is to discover the hidden connections between these digital identi‐
ties and then to link or merge them together. By doing so, we will
be able to connect all of the information together, forming a more
complete picture of the user. In particular, we will know all the vid‐
eos that a person has watched, in order to get a better understand‐
ing of their personal taste and to make better recommendations.

Now that we’ve crafted a clear problem statement, let’s consider a potential solution --
entity resolution. Entity resolution has two parts: deciding which entities are proba‐
bly the same, and then resolving entities. Let’s look at each part in turn.

Learning Which Entities Are The Same
If we are fortunate enough to have training data showing us examples of entities that
are in fact the same, we can use supervised learning to train a machine learning
model. In this case, we do not have training data. Instead, we will rely on the charac‐
teristics of the data itself, looking at similarities and communities to perform unsu‐
pervised learning.

To do a good job, we want to build in some domain knowledge. What are the situa‐
tions for a person to have multiple online identities, and what would be the clues in
the data? Here are some reasons why a person may create multiple accounts:

• A user creates a second account because they forgot about or forgot how to
access the first one.

• A user has accounts with two different streaming services, and the companies
enter a partnership or merge.

• A person may intentionally set up multiple distinct identities, perhaps to take
advantage of multiple membership rewards or to separate their behavioral pro‐
files (e.g., to watch different types of videos on different accounts). The personal
information may be very different, but the device IDs might be the same.

Whenever the same person creates two different accounts at different moments, there
can be variations in some details for trivial or innocuous reasons. The person decides
to use a nickname. They choose to abbreviate a city or street name. They mistype.
They have multiple phone numbers and email addresses to choose from, and they
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make a different choice for no particular reason. Over time, more substantial changes
may occur, to address, phone number, device IDs, and even to the user’s name.

While several situations can result in one person having multiple online identities, it
seems we can focus our data analysis on only two patterns. In the first pattern, most
of the personal information will be the same or similar, but a few attributes may dif‐
fer. Even when two attributes differ, they may still be related, such as use of a nick‐
name or a misspelling of an address. In the second pattern, much of the information
is different, but one or more key pieces remain the same, such as home phone num‐
ber or birthdate, and behavioral clues (such as what type of videos they like and what
time of day do they watch them) may suggest that two identities belong to the same
person.

To build our solution, we will need to use some similarity algorithms and also a com‐
munity detection or clustering algorithm to group similar entities together.

Resolving Entities
Once we have used the appropriate algorithms to identify a group of entities that we
believe to be the same, what will do about it? We want to update the database some‐
how to reflect this new knowledge. There are two possible ways to accomplish this:
merge the group into one entity or link the entities in a special way so that whenever
we look at one member of the group, we will readily see the other related identities.

Merging the entities makes sense only when some online identities are considered
incorrect, so we want to eliminate them. For example, suppose a customer has two
online accounts because they misspelled their name or forgot that they had an
account already. Both the business owner and the customer wants to eliminate one
account and to merge all of the records (purchase history, game scores, etc.) into one
account. Knowing which account to eliminate takes more knowledge of each specific
case than we have in our example.

We will take the safer route and simply link entities together. Specifically, we will have
two types of entities in the graph: one representing digital identities and the other
representing real-world entities. After resolution, the database will show one real-
world entity having an edge to each of its digital identities, as illustrated in Figure 2-1.
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Figure 2-1. Digital entities linked to a real-world entity, after resolution

Implementation
The implementation of graph-based entity resolution we present below is available as
a TigerGraph Cloud Starter Kit. As usual, we will focus on using the GraphStudio vis‐
ual interface. All of the necessary operations could also be performed from a com‐
mand line interface, but that would lack the visual interface.

Starter Kit
To get and install your Starter Kit, do one of the following::

1. Use a TigerGraph Cloud instance preloaded with this example, go to tgcloud.io
and select the Starter Kit called In-Database Machine Learning for Big Data
Entity Resolution.

2. Load this Starter Kit onto your own machine which is running TigerGraph,
either on-premises or on the cloud, go to www.tigergraph.com/starterkits.
a. Find In-Database Machine Learning for Big Data Entity Resolution.
b. Download Data Set and the solution package corresponding to your version

of the TigerGraph platform.
c. Start your TigerGraph instance. Go to the GraphStudio home page.
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d. Click Import An Existing Solution, as highlighted in Figure 2-2, and select the
solution package which you downloaded

Importing a GraphStudio Solution will delete your existing data‐
base. If you wish to save your current design, perform a GraphStu‐
dio Export Solution and also gsql backup.

Figure 2-2. Importing a GraphStudio solution

Graph Model
The Starter Kit is preloaded with a graph model based on an actual SVoD business.
The name of the graph is Entity_Resolution. When you start GraphStudio, you are
working at the global graph view. To switch to the Entity_Resolution graph, click on
the circular icon in the upper left corner. A dropdown menu will appear, showing you
the available graphs and letting you create a new graph. Click on Entity_Resolution.
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Figure 2-3. Selecting the graph to use

You should now see a graph model or schema like the one in Figure 2-4 in the main
display panel.
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Figure 2-4. Graph schema for video customer accounts

You can see that Account, User, and Video are hub vertices with several edges radiat‐
ing from them. The other vertices represent the personal information about users and
the characteristics of videos. We want to compare the personal information of differ‐
ent users. Following good practice for graph-oriented analytics, if we want to see if
two or more entities have something feature in common, e.g., email address, we
model that feature as a vertex instead of as a property of a vertex. Table 2-1 gives a
brief explanation of each of the vertex types in the graph model. Though the starter
kit’s data contains much data about videos, we will not focus on the videos themselves
in this exercise. We are going to focus on entity resolution of Accounts.

Table 2-1. Vertex types in the graph model
Account an account for a SVoD user, a digital identity
User a real-world person. One User can link to multiple Accounts
IP, Email, Last_User, Phone,
Address, Device

attributes of an Account. They are represented as vertices instead of internal properties of
Account to facilitate linking Accounts/Users that share a common attribute.

Video a video title offered by an SVoD
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Keyword, Genre attributes of a Video
Video_Play_Event the time and duration of a particular Account viewing a particular Video

Data Loading
In TigerGraph Starter Kits, the data is included, but it is not yet loaded into the data‐
base. To load the data, switch to the Load Data page (step 1 of Figure 2-5), wait a few
seconds until the Load button in the upper left of the main panel becomes active, and
then click it (step 2). You can watch the progress of the loading in the real-time chart
at the right (not shown). Loading the 84K vertices and 270K edges should take only
about 40 seconds on the TGCloud free instances; faster on the paid instances.

Figure 2-5. Loading data in a Starter Kit

Queries and Analytics
We will analyze the graph and run graph algorithms by composing and executing
queries in GSQL, TigerGraph’s graph query language. When you first deploy a new
Starter Kit, you need to install the queries. Switch to the Write Queries page (step 1 of
Figure 2-6). Then at the top right of the list of queries, click the Install All icon (step
2).
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Figure 2-6. Installing queries

For our entity resolution use case, we have a three-stage plan requiring three or more
queries.

Initialization
For each Account vertex, create its own User vertex and link them. Accounts are
online identities, and Users represent real-world persons. We begin with the
hypothesis that each Account is a real person.

Similarity Detection
Apply one or more similarity algorithms to measure the similarity between User
vertices. If we consider a pair to be similar enough, then we create a link between
them, using the SameAs edge type shown in Figure 2-5.

Merging
Find the connected components of linked User vertices. Pick one of them to be
the main vertex. Transfer all of the edges of the other members of the community
to the main vertex. Delete the other community vertices.

For reasons we will explain when we talk about merging, you may need to repeat
steps 2 and 3 as a pair, until the Similarity Detection step is no longer creating any
new connections.

We will present two different methods for implementing entity resolution in our use
case. The first method uses Jaccard similarity (introduced in Chapter 10) to count
exact matches of neighboring vertices. Merging will use a Connected Component
algorithm. The second method is a little more advanced, suggesting a way to handle
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both exact and approximate matches of attribute values. Approximate matches are a
good way to handle minor typos or the use of abbreviated names.

Method 1: Jaccard Similarity
For each of the three stages, we’ll give a high level explanation, directions for opera‐
tions to perform in TigerGraph’s GraphStudio, what to expect as a result, and a closer
look at some of the GSQL code in the queries.

Initialization
Recall in our model that an Account is a digital identity, and a User is a real person.
The original database contains only Accounts. The initialization step creates a unique
temporary User linked to each Account. And, for every edge from an Account to one
of the attribute vertices (Email, Phone, etc.), we create a corresponding edge from the
User to the same set of attribute vertices. Figure 2-7 shows an example. The three ver‐
tices on the left and the two edges connecting them are part of the original data. The
initialization step creates the User vertex and the three dotted-line edges. As a result,
each User starts out with the same attribute neighborhood as its Account.

Figure 2-7. User vertex and edges created in the initialization step

Run the GSQL query initialize_users by selecting the query name from the list
(step 1 in Figure 2-8) and then clicking the Run icon above the code panel (step 2).
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This query has no input parameters, so it will run immediately without any addi‐
tional steps from the user.

Figure 2-8. Running the initialize_users query

Let’s take a look at the GSQL code. The block of code below shows the first 20 lines of
initialize_users. If you are familiar with SQL, then GSQL may look familiar. The com‐
ment at the beginning (lines 2 and 3) lists the 6 types of attribute vertices to be
included. Lines 6 to 10 create a User vertex (line 9) and an edge connecting the User
to the Accounts (line 10) for each Account (line 6) which doesn’t already have a neigh‐
boring User (line 7).

1   CREATE QUERY initialize_users() SYNTAX v2 {
2   // Create a User vertex for each Account, plus edges to connect attributes
3   // (IP, Email, Device, Phone, Last_Name, Address) of the Account to the User
4
5   // Initialize each account with a user
6   Accounts = SELECT s FROM Account:s
7   WHERE s.outdegree("Has_Account")==0
8   ACCUM
9     INSERT INTO User VALUES(s.id),
10    INSERT INTO Has_Account VALUES(s.id, s);
11
12  // Connect the User to all the attributes of their account
13  IPs = SELECT attr FROM Accounts:s -(Has_IP:e)- IP:attr
14  ACCUM
15    INSERT INTO User_IP VALUES(s.id, attr);
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16
17  Emails = SELECT attr FROM Accounts:s -(Has_Email:e)- Email:attr
18  ACCUM
19    INSERT INTO User_Email VALUES(s.id, attr);
20  // Remaining code omitted for brevity
21  }

GSQL’s ACCUM clause is an iterator with parallel asynchronous
processing. Think of it as “FOR EACH set of vertices and edges
which match the pattern in the FROM clause, do the following.”

Lines 13 to 15 take care of IP attribute vertices: If there is a Has_IP edge from an
Account to an IP vertex, then insert an edge from the corresponding User vertex to
the same IP vertex. While the alias s defined in line 13 refers to an Account, s.id in
line 15 can refer to a User because the source vertex of a User_IP edge may only be a
User, and we recently used s.id to create a User (line 9). Lines 17 to 19 take care of
Email attribute vertices in an analogous way. The code blocks for the remaining four
attribute types (Device, Phone, Last_Name, and Address) have been omitted for brev‐
ity.

Similarity Detection
Jaccard similarity counts how many attributes two entities have in common, divided
by the total number of attributes between them. Each comparison of attributes results
in a yes/no answer; a miss is as good as a mile. Figure 2-9 shows an example where
User A and User B each have three attributes; two of those match (Email 65 and
Device 87). Therefore, A and B have two attributes in common.
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Figure 2-9. Jaccard similarity example

They have a total of four distinct attributes (Email 65, Device 87, Phone 23, and
Phone 99); therefore, the Jaccard similarity is 2/4 = 0.5.

Do: Run connect_jaccard_sim.

The query connect_jaccard_sim computes this similarity score for each pair of verti‐
ces. If the score is at or above the given threshold, then create a Same_As edge to con‐
nect the two Users. The default threshold is 0.5, but you can make it higher or lower.
Jaccard scores range from 0 to 1. Figure 2-10 shows the connections for User vertices
1, 2, 3, 4, and 5, using Jaccard similarity and a threshold of 0.5. For these five vertices,
we need communities that range in size from one vertex alone (User 3) to two clus‐
ters of three (Users 1 and 2).
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Figure 2-10. Connections for User vertices 1, 2, 3, 4, and 5, using Jaccard similarity and
a threshold of 0.5

How to Visualize User Communities
You can use the Explore Graph page in TigerGraph GraphStudio to create a display
like the one in Figure 2-10.

1. Click the Select Vertices icon at the top of the left-side menu (step 1 in
Figure 2-11).

2. Choose the User type vertex. Enter the vertex ID 1 and click the Select icon. (step
2 in Figure 2-11). User 1 will appear in the display pane. Repeat for vertex IDs 2,
3, 4, and 5.
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3. Shift-click the vertices so that all of them are selected (step 3, Figure 2-12).
4. Click the Expand From Selected Vertices icon, the next item in the left-side menu

(step 4).
5. You are now presented with a checklist of all the edge types you wish to traverse,

followed by a checklist of all the target vertex types. We want to include only the
User and Account vertex types (step 5). This specifies a one-hop exploration.

6. We need to explore multiple hops, including the full communities. We don’t
know the diameter of the communities, but let’s just guess that three hops is
enough. Click the Add Expansion Step button at the bottom (step 6). Another set
of checklists appear. Again, select only the User and Account vertex types. This is
the second hop. Repeat these steps to set your third hop.

7. Click the Expand button above the checklists (step 7).

Figure 2-11. Selecting vertices on the Explore Graph page.
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Figure 2-12. Expanding from vertices
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Rather than showing the full code, we’ll just focus on a few excerpts. In the first code
snippet, we’ll show how to count the attributes in common between every pair of
Users, using a single SELECT statement. The statement uses pattern-matching to
describe how two such Users would be connected, and then it uses an accumulator to
count the occurrences.

1   Others = SELECT B FROM
2   Start:A -()- (IP|Email|Phone|Last_Name|Address|Device):n -()- User:B
3   WHERE B != A
4   ACCUM
5     A.@intersection += (B -> 1); // tally each path A->B,
6     @@path_count += 1            // count the total number of paths

GSQL’s FROM clause describes a left-to-right path moving from
vertex to vertex via edges. Each sequence of vertices and edges
which fit the requirements form one “row” in the temporary “table”
of results, which is passed on to the ACCUM and POST-ACCUM
clauses for further processing.

The FROM clause in lines 1 to 2 presents a graph path pattern to search for. FROM
User:A -()- (IP|Email|Phone|Last_Name|Address|Device):n -()- User:B

defines a two-hop path pattern:

• User:A means start from a User vertex, aliased to A,
• -()- means pass through any edge type
• (IP|Email|Phone|Last_Name|Address|Device):n means arrive at one of these

six vertex types, aliased to n
• -()- means pass through another edge of any type, and finally
• User:B means arrive at a User vertex, aliased to B

In line 3, (WHERE B != A) ensures that we skip the situation of a loop where A = B.
Line 4 announces the start of an ACCUM clause. Line 5 (A.@intersection += (B ->
1); // tally each path A->B) is a good example of GSQL’s support for parallel
processing and aggregation: for each path from A to B, append a key → value record
attached to A. The record is (B, +=1). That is, if this is the first record associating B
with A, then set the value to 1. For each additional record where B is A’s target, then
increment the value by 1. Hence, we’re counting how many times there is a connec‐
tion from A to B, via one of the six specified edge types. Line 6 (ACCUM @@path_count
+= 1) is just for bookkeeping purposes, to count now many of these paths we find.

Let’s look at one more code block, the final computation of Jaccard similarity and cre‐
ation of connections between Users.
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1   Result = SELECT A FROM User:A
2   ACCUM FOREACH (B, overlap) IN A.@intersection DO
3   FLOAT score = overlap*1.0/(@@deg.get(A) + @@deg.get(B) - overlap),
4   IF score > threshold THEN
5     INSERT INTO EDGE SameAs VALUES (A, B, score), // FOR Entity Res
6     @@insert_count += 1,
7     IF score != 1 THEN
8       @@jaccard_heap += SimilarityTuple(A,B,score)
9     END
10  END
11  END;

This SELECT block does the following:

1. For each User A, iterate over its record of similar Users B and the number of
common neighbors, aliased to overlap.

2. For each such pair (A, B), compute the Jaccard score, using overlap as well as the
number of qualified neighbors of A and B (@@deg.get(A) and @@deg.get(B)),
computed earlier.

3. If the score is greater than the threshold, insert a SameAs edge between A and B.
4. @@insert_count and @@jaccard_heap are for reporting statistics and are not

essential.

Merging
In our third and last stage, we merge together the connected communities of User
vertices which we created in the previous step. For each community, we will select
one vertex to be the survivor or lead. The remaining members will be deleted; all of
the edges from an Account to a non-lead will be redirected to point to the lead User.

Do: run query merge_connected_users. Look at the JSON output. Note whether t says
converged = TRUE or FALSE.

Figure 2-13 displays the User communities for Accounts 1, 2, 3, 4, and 5. The user
communities have been reduced to a single User (real person). Each of those Users
links to one or more Accounts (digital identities). We’ve achieved our entity resolu‐
tion.
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Figure 2-13. Entity resolution achieved, using Jaccard similarity

The merge_connected_users algorithm has four stages:

1. Find connected users using the connected component algorithm.
2. In each component, select a lead user.
3. In each component, redirect the attribute connections from other users to the

lead user.
4. Delete the users that are not the lead user and all of the Same_As edges.

We’ll take a closer look at the GSQL code for the Connected Components algorithm.
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1   Users = {User.*};
2   Updated_users = SELECT s FROM Users:s
3     POST-ACCUM
4       s.@min_user_id = s;
5
6   WHILE (Updated_users.size() > 0) DO
7     IF verbose THEN PRINT iteration, Updated_users.size(); END;
8     Updated_users = SELECT t
9      FROM Updated_users:s -(SameAs:e)- User:t
10      // Propagate the internal IDs from source to target vertex
11     ACCUM t.@min_user_id += s.@min_user_id   // t gets the lesser of t & s ids
12     HAVING t.@min_user_id != t.@min_user_id' // accum is accum's previous val
13      ;
14    iteration = iteration + 1;
15  END;

Line 1 initializes the vertex set called Users to be all User vertices. Lines 2 to 4 initial‐
izes an accumulator variable @min_user_id for each User. The initial value is the ver‐
tex’s internal ID (different from the externally visible ID). This variable will store the
algorithm’s current best guess at the community ID for this vertex: all vertices having
the same value of @min_user_id belong to the same community. It’s important to
note that this accumulator is a MinAccum. Whenever you input a new value to a
MinAccum, it retains the lesser of its current value and the new input value.

Lines 8 to 11 says that for each connected User pair from s to t, set t.@min_user_id
to the lesser of s and t’s community IDs. Line 12 says that the output set (Upda
ted_users in line 8) should contain only those User vertices who updated their com‐
munity ID in this round. Note the tick mark ' at the end of the line; this is actually a
modifier for the accumulator t.@min_user_id. It means “the previous value of the
accumulator”; this lets us easily compare the previous to current values. When no
vertices have changed their ID, then we can exit the WHILE loop (line 6).

Are We There Yet?
It might seem that one pass through the three steps – initialize, connect similar enti‐
ties, and merge connected entities – should be enough. The merging, however, can
create a situation in which new similarities arise. Take a look at Figure 2-14, which
depicts the attribute connections of User 302 after Users 2 and 602 have been merged
into it. Accounts 2, 302, and 602 remain separate, so you can see how each of them
contributed some attributes. Because User 302 has more attributes than before, it is
now possible that it is more similar than before to some other (possibly newly
merged) User. Therefore, we should run another round of similarity connection and
merge. Repeat these steps until no new similarities arise.
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Figure 2-14. User with more attributes after entity resolution

For convenient reference, here is the sequence of queries we ran for
simple entity resolution using Jaccard similarity:
Run initialize_users
Run connect_jaccard_sim
Run merge_connected_users
Repeat steps 2 & 3 until the output of merge_connected_users says
conversed = TRUE

Reset
After you’ve finished, or at any time, you might want to restore the database to its
original state. You need to do this if you want to run the entity resolution process
from the start again. The query util_delete_users will delete all User vertices and all
edges connecting to them. Note that you need to change the input parameter
are_you_sure from FALSE to TRUE. This manual effort is put in as a safety precau‐
tion.
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Deleting bulk vertices (util_delete_users) or creating bulk vertices
(initialize_users) can take tens of seconds in the modestly sized free
TigerGraph Cloud instances. Go to the Load Data page to check
the live statistics for User vertices and User-related edges to see if
the creation or deletion has finished.

Method 2: Scoring Exact and Approximate Matches
The previous section demonstrated a nice and easy graph-based entity resolution
technique, but it is too basic for real-world use. It relies on exact matching of attribute
values, whereas we need to allow for almost-the-same values, which arise from unin‐
tentional and intentional spelling variations. We also would like to make some
attributes more important than others. For example, if you happen to have date-of-
birth information, you might be strict about this attribute matching exactly. While
persons can move, have multiple phone numbers and email addresses, they can only
have one birthdate. In this section, we will introduce weights to adjust the relative
importance of different attributes. We will also provide a technique for approximate
matches of string values.

If you already used your starter kit to run Method 1, be sure to
reset it. (See the Reset section at the end of Method 1.)

Initialization
We are still using the same graph model with User vertices representing real persons
and Account vertices representing digital accounts. So, we are still using the initial‐
ize_users query to set up an initial set of User vertices.

We are adding another initialization step. We are going to assign weights to each of
the six attributes: IP, Email, Phone, Address, Last_Name, and Device. If this were a
relational database, we would store those weights in a table. Since this is a graph, we
are going to store them in a vertex. We only need one vertex, because one vertex can
have multiple attributes. However, we are going to be even more fancy. We are going
to use a map type attribute, which will have six key → value entries. This allows us to
use the map like a lookup table: tell me the name of the key (attribute name), and I’ll
tell you the value (weight).

Do:

1. Run initialize_users. Check the graph statistics on the Load Data page to make
sure that all 900 Users and related edges have been created.
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2. Run util_set_weights. The weights for the six attributes are input parameters for
this query. Default weights are included, but you may change them if you wish. If
you want to see the results, run util_print_vertices.

Scoring Weighted Exact Matches
We are going to do our similarity comparison and linking in two phases. In phase
one, we are still checking for exact matches because exact matches are more valuable
than approximate matches; however, those connections will be weighted. In phase
two, we will then check for approximate matches for our two attributes which have
alphabetic values: Last_Name and Address.

In weighted exact matching, we create weighted connections between Users, where
higher weights indicate stronger similarity. The net weight of a connection is the sum
of the contributions from each attribute that is shared by the two Users. Figure 2-15
illustrates the weighted match computation. Earlier, during the initialization phase,
you established weights for each of the attributes of interest. In the figure, we use the
names wt_email and wt_phone for the weights associated with matching Email and
Phone attributes, respectively.

Figure 2-15. Two-phase calculation of weighted matches

The weighted match computation has two steps. In step 1, we look for connections
from Users to Attributes and record a weight on each attribute for a connection to
each User. Both User A and User B connect to Email 65, so Email 65 records
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A:wt_email and B:wt_email. Each User’s weight needs to be recorded separately.
Phone 99 also connects to Users A and B so it records analogous information.

In step 2, we look for the same connections but in the other direction, with Users as
the destinations. Both Email 65 and Phone 99 have connections to User A. User A
aggregates their records from step 1. Note that some of those records refer to User A.
User A ignores those, because it is not interested in connections to itself! In this
example, it ends up recording B:(wt_email + wt_phone). We use this value to create
a weighted Same_As edge between Users A and B. You can see that User B has equiv‐
alent information about User A.

Do: run connect_weighted_match.

Figure 2-16 shows one of the communities generated by connect_weighted_match.
This particular community is the one containing User/Account 5. The figure also
shows connections to two attributes, Address and Last_Name. The other attributes
such as Email were used in the scoring but are not shown, to avoid clutter.
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Figure 2-16. User community including Account 5 after exact weighted matching

The thickness of the SameAs edges indicates the strength of the connection. The
strongest connection is between Users 505 and 805 at the bottom of the screen. In
fact, we can see three subcommunities of Users among the largest community of
seven members:
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• Users 5, 105, and 205 at the top. The bond between Users 5 and 105 is a little
stronger, for reasons not shown. All three share the same last name. They have
similar addresses.

• Users 305 and 405 in the middle. Their last names and address are different, so
some of the attributes not shown must be the cause of their similarity.

• Users 505 and 805 at the bottom. They share the same last name and address, as
well as other attributes.

Scoring Approximate Matches
We can see (in Figure 2-16) that some Users have similar names (Ellsworth vs. Elles‐
worth) and similar addresses (Eagle Creek Center vs. Eagle Crest Ctr). A scoring sys‐
tem that looks only for exact matchings gives us no credit for these near misses. An
entity resolution system would like to be able to assess the similarity of two text
strings and to assign a score to the situation. Do they differ by a single letter, like Ells‐
worth and Ellsworth? Are letters transposed, like Center and Cneter? Computer sci‐
entists like to think of the edit distance between two text strings: how many single-
letter changes of value or position are needed to transform string X into string Y?

We are going to use the Jaro-Winkler similarity to measure the similarity between
two strings, an enhancement of Jaro similarity. Given two strings s1 and s2, who have
m matching characters and t transformation steps between them, then their Jaro sim‐
ilarity is defined as shown in Equation 2-1.

Equation 2-1. Definition of Jaro similarity

Jaro s1, s2 = 1
3

m
s1 + m

s2 + m − t
m

If the strings are identical, then m = |s1| = |s2|, and t =0, so the equation simplifies to
(1 + 1 + 1)/3 = 1. On the other hand, if there are no letters in common, then the score
= 0. We then multiply this score by the weight for the attribute type. For example, if
the attribute’s weight is 0.5, and if the JaroWinkler similarity score is 0.9, then the net
score is 0.5 * 0.9 = 0.45.

Jaro-Winkler similarity takes Jaro as a starting point and adds an additional reward if
the beginnings of each string, reading from the left end, match exactly.

Do: Run score_similar_attributes.

The score_similar_attributes query considers the User pairs which already are linked
by a Same_As edge. It computes the weighted Jaro-Winkler similarity for the
Last_Name and the Address attributes, and adds those scores to the existing similar‐
ity score. We chose Last_Name and Address because they are alphabetic instead of
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numeric. This is an application decision rather than a technical one. Figure 2-17
shows the results after adding in the scores for the approximate matches.

Figure 2-17. User community including Account 5 after exact and approximate weighted
matching

Comparing Figures 11-16 and 11-17, we notice the following changes:

• The connections among Users 1, 105, and 205 have strengthened due to their
having similar addresses.

• User 305 is more strongly connected to the trio above due to a similar last name.
• The connection between 305 and 405 has strengthened due to their having simi‐

lar addresses.
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• User 405 is more strongly connected to Users 505 and 805 due to the name
Hunter having some letters in common with Brunke. This last effect might be
considered an unintended consequence of the Jaro-Winkler similarity measure
not being as judicious as a human evaluator would be.

Comparing two strings is a general purpose function which does not require graph
traversal, so we have implemented it as a simple string function in GSQL. Because it
is not yet a built-in feature of the GSQL language, we took advantage of GSQL’s ability
to accept a user-supplied C++ function as a user-defined function (UDF). The UDFs
for jaroDistance(s1, s2) and jaroWinklerDistance(s1, s2) are included in this
starter kit. You can invoke them from within a GSQL query anywhere that you would
be able to call a built-in string function.

The code snippet below shows how we performed the approximate matching and
scoring for the Address feature:

1   Connected_users = SELECT A
2     // Find all linked users, plus each user's address
3     FROM Connected_users:A -(SameAs:e)- User:B,
4        User:A -()- Address:A_addr,
5        User:B -()- Address:B_addr
6     WHERE A.id < B.id    // filter so we don't count (A,B) & (B,A)
7     ACCUM @@addr_match += 1,
8     // If addresses aren't identical compute JaroWinkler * weight
9     IF do_address AND A_addr.val != B_addr.val THEN
10      FLOAT sim = jaroWinklerDistance(A_addr.id,B_addr.id) * addr_wt,
11      @@sim_score += (A -> (B -> sim)),
12      @@string_pairs += String_pair(A_addr.id, B_addr.id),
13      IF sim != 0 THEN @@addr_update += 1 END
14    END
15  ;

Lines 3 to 5 are an example of a conjunctive path pattern, that is, a compound pattern
comprising several individual patterns, separated by commas. The commas act like
boolean AND. This conjunctive pattern means “find a User A linked to a User B, and
find the Address connected to A, and find the Address connected to B.” Line 6 filters
out the case where A = B and prevents a pair (A, B) from being processed twice.

Line 9 filters out the case where A and B are different but have identical addresses. If
their addresses are the same, then we already gave them full credit when we ran con‐
nect_weighted_match. Line 10 computes the weighted scoring, using the jaroWinkler‐
Distance function and the weight for Address. Line 11 stores this value in a lookup
table temporarily. Lines 12 and 13 are just to record our activity, for informative out‐
put at the end.
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Merging Similar Entities
In Method 1, we had a simpler scheme for deciding whether to merge two entities: if
their Jaccard score was greater than some threshold, then we created a SameAs edge.
The decision was made. Merge everything that has a SameAs edge. We want a more
nuanced approach now. Our scoring has adjustable weights, and the SameAs edges
record our scores. We can use another threshold score to decide which Users to
merge.

Take another look at Figure 2-17. We can see the effect of threshold score for merg‐
Ing. If we set the threshold at 3.0, there would be only two merges in this community:
(5, 105) and (505, 805). If we set it at 2.0, we will get the three communities that we
spoke about earlier: (5, 105, 205), (305, 405), and (505, 805). If we set the threshold at
1.0, all seven Users will be merged into 1.

We only need to make two small changes to merge_connected_users to let the user
set a threshold.

• Add a threshold parameter to the query header:

CREATE QUERY merge_connected_users(FLOAT threshold=1.0, BOOL ver

bose=FALSE)

• In the connected component algorithm, add a WHERE clause to check the
SameAs edge’s similarity value:

1   WHILE (Updated_users.size() > 0) DO
2     IF verbose THEN PRINT iteration, Updated_users.size(); END;
3     Updated_users = SELECT t
4       FROM Updated_users:s -(SameAs:e)- User:t
5       WHERE e.1  similarity > threshold
6         // Propagate the internal IDs from source to target vertex
7           // t gets the lesser of t & s ids
8       ACCUM t.@min_user_id += s.@min_user_id
9           // accum' is accum's previous val
10      HAVING t.@min_user_id != t.@min_user_id'
11    ;
12    iteration = iteration + 1;
13  END;

Run merge_connected_users. Pick a threshold value and see if you get the result that
you expect.

Figure 2-18 shows the three different merging results for threshold values of 1.0, 2.0,
and 3.0, to the community we have been following.

88 | Chapter 2: Entity Resolution Revisited



Figure 2-18. Entity resolution with different threshold levels

That concludes our second and more nuanced method of entity resolution.

For convenient reference, here is the sequence of queries we ran for
entity resolution using weighted exact and approximate matching:

1. Run initialize_users
2. Run util_set_weights
3. Run connect_weighed_match
4. Run score_similar_attributes
5. Run merge_connected_users
6. Repeat steps 3, 4 and 5 until the output of merge_connec‐

ted_users says conversed = TRUE

Chapter Summary
In this chapter we saw how graph algorithms and other graph techniques can be used
for more sophisticated entity resolution than the simple entity resolution presented
earlier in this book. Similarity algorithms and the connected component algorithm
play key roles. We considered several schemes for assessing the similarity of two enti‐
ties: Jaccard similarity, weighted sum of exact matches, and Jaro-Winkler similarity
for comparing text strings.
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These approaches can readily be extended to supervised learning if training data
becomes available. There are a number of model parameters that can be learned, to
improve the accuracy of the entity resolution: the scoring weights of each Attribute
for exact matching, tuning the scoring of approximate matches, and thresholds for
merging similar Users.

We saw how we use the FROM clause in GSQL queries to select data in a graph, by
expressing a path or pattern. We also saw examples of the ACCUM clause and accu‐
mulators being used to compute and store information such as the common neigh‐
bors between vertices, a tally, an accumulating score, or even an evolving ID value,
marking a vertex as a member of a particular community.

This chapter showed us how graph-based machine learning can improve the ability of
enterprises to see the truth behind the data. In the next chapter, we’ll apply graph
machine learning to one of the most popular and important use cases: product rec‐
ommendation.
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