
In-Database Machine
Learning for Big Data
Entity Resolution

DATA SCIENCE MINI-GUIDE

By Dr. Changran Liu, Solution Architect, TigerGraph

MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 2

The world is gathering data faster than it can make sense of it. According to

market intelligence company IDC, the “Global Datasphere” in 2018 reached

18 Zettabytes. One zettabyte is approximately equal to one billion terabytes

and more data is being generated at a faster pace every day.

The data being collected by organizations can, however, give a misleading

or fragmented view of the real world. A person, for example, could appear

multiple times (or have multiple digital entities) within the same database,

due to typos, name changes, aggregation of different systems and so on.

If we try to merge two databases, how do we match entities, when the ID

systems might be different or contain errors?

Entity resolution helps organizations get to the truth. Entity resolution, which

is the disambiguation of real-world entities in a database, is an essential data

quality tool for businesses wanting to see the full customer journey, and to

make the right recommendations, or for law enforcement agencies trying to

uncover criminal activity and the perpetrators.

Machine Learning and Entity Resolution

Entity resolution helps get to
the truth. Entity resolution,
which is the disambiguation
of real-world entities in a
database, is an essential
data quality tool.

Graph databases can help you disambiguate

The key task of entity resolution is to find and make linkages between digital entities which refer to the same real-world

entities. Graph is the most intuitive, and as we will also show later, the most efficient data structure used for connecting dots.

Using graph, each digital entity or attribute can be represented as a vertex, and the entity-has-attribute relationships can be

represented as edges. In such an entity-attribute graph, when multiple entities share the same attributes, they will be linked

together by the graph (see Figure 1). By representing the entity-attribute relationship as a graph, a variety of graph algorithms

(e.g. cosine similarity, Jaccard similarity, connected component, label propagation, Louvain) can be performed for the task of

entity resolution.

Figure 1: Each vertex in the graph represents either an entity or an attribute. The edges represent the entity-has-

attribute relationship. The graph links different entities together when they share common attributes. For example,

Entity 3 and Entity 5 are linked by Attribute 4 and Attribute 5.

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 3

Graph provides an efficient
approach for the entity
resolution problem. A native
graph database with
massive parallel computing
capability is the best tool to
implement the approach.

Solving the entity resolution problem with graph can be categorized

into two main steps, namely linking and grouping. In the linking stage,

graph algorithms, such as cosine similarity, Jaccard similarity, can be

applied for pairwise matching. Once two entities are matched, an edge

can be drawn between them to represent the same-as relationship. The

same-as relationship can be deterministic or probabilistic. In the case of

probabilistic relationships, a weighted edge can be used to represent

the likelihood of one entity being the same as the other entity. In the

grouping stage, the inserted same-as edges can greatly accelerate the

computation in which graph community detection algorithms, such as

connected component, label propagation, and Louvain, can be used to

group the the digital entities by their real-world entities.

Graph provides an efficient approach for the entity resolution problem.

A native graph database with massive parallel computing capability

is the best tool to implement the approach. Solving entity resolution

problems by running queries in the database not only saves the time for

exporting the data to the other computing platform, but also addresses

the challenge of ever-growing data size and data update. Additionally,

because of the transitivity of the same-as relationship (i.e. if entity A is

the same as entity B, and entity B is the same as entity C, then entity

A is also the same as entity C), entity resolution requires multiple-

hop queries. Such queries require multiple join operations which are

computationally expensive for relational database. A graph database,

on the other hand, is the ideal solution for the big data entity resolution

task. In the next section, we will show how to implement a TigerGraph

solution for entity resolution.

TigerGraph is especially adept at uncovering the truth

Let’s examine a real-world example of how TigerGraph disambiguates the users of movie streaming websites through some

login information. When people are logging into their account of a streaming website to watch a movie, the website may collect

some login information such as the user account, user email used for account registration, IP address, physical address (device

ID), and login time. A movie streaming company can have millions of user accounts and billions of login records. One person

may register multiple accounts and one account can be logged in with different IP addresses, and devices. In this scenario,

each user account is a digital entity with multiple attributes. The entity resolution task is to link the accounts to the real-world

entity, a human user. Without loss of generality, in this simplified example, we assume each login record contains the user

account, user email, IP address, device ID, and phone number (see Table 1). The five accounts in this toy example were actually

registered by the same person. Now let’s build a graph in TigerGraph to find this person.

user account user email IP address device ID phone

1 jojo@adv.com 18.207.48.62 2E-1D-ED-EC-D9-ED 181-481-4409

2 jj@adv.com 18.207.48.62 2E-1D-ED-EC-D9-ED 415-509-4062

3 jjoe@adv.com 18.207.48.62 2E-1D-ED-EC-D9-ED 505-316-1184

4 jjoe@adv.com 18.207.48.92 E3-5B-BC-03-0D-AC 312-921-5548

5 jj@adv.com 18.207.48.92 E3-5B-BC-03-0D-AC 312-921-5548

Table 1: Sample entities for Joseph Joestar

MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 4

Defining the graph schema

We need six types of vertices in this graph.

The first type of vertex is for the user accounts.

Similarly, each of the four attributes, user email,

phone, IP address and device ID, can also be

represented by a type of vertex. The last type of

vertex is the user. The grouping of the entities will

be done by connecting all the matching account

vertices to the same user vertices. For the edges,

we have “has” edges between accounts and the

attributes, “Has Account” edges between users

and their accounts, and “same as” edge between

users.

Figure 2: TigerGraph Cloud Schema for the

Starter Kit - In-Database Machine Learning for

Big Data Entity Resolution

Loading Data

With the graph schema above, the

data can be loaded to create the

entity-attribute graph. For each

record, we will use the user account

as well as the attributes to create

vertices, and connect the account

vertex with its attribute vertices.

Figure 3 shows the graph created

by the sample data in table 1.

Figure 3. The graph created by loading the data in Table 1

https://www.tigergraph.com/starterkits/
https://www.tigergraph.com/starterkits/

MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 5

Running queries

We implement entity resolution as three queries: Initialization, linking and grouping.

Figure 4: The initialization query

creates users, one user per account

2) Linking

The linking query connects the entities that satisfy the matching condition. In this example, let’s assume two accounts were

registered by the same person when they share at least two attributes. For example, account 1 and 3 were logged in both

using the same IP address and device, thus we consider they were registered by the same person (see figure 4). In this case,

the linking query traverses all the user - attribute - user paths and counts how many attributes are shared for each pair of

users. Lastly, the query will insert an edge between two user vertices if they are linked by at least two attributes.

Figure 5: (a) In the above example, four same-as edges will be inserted between user (1, 2), (1, 3), (2, 3) and (4, 5)

because each pair shares at least two common attributes. The connections between user 1 and 2 are highlighted.

(b) The graph of user-user relationship after inserting the same-as edges in the linking query. For simplicity

purposes, this figure does not show the account and attribute vertices in the graph.

Figure 5 (a) Figure 5 (b)

1) Initialization

The initialization query assumes each account is registered by a different user and let the user inherit all the attributes of his

account. For simplicity purposes, figure 4 only shows the user-attribute relationships and does not show the account vertices

in the graph.

MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 6

3) Grouping

After the linking query finishes, all the matching users will be connected. The entity deduplication can be achieved by

merging the connected user vertices together. This can be done by performing the connected component algorithm on

the network formed by the user vertices and same-as edges. Briefly, the connected component algorithm will find the

connected entities by assigning the same label to the entities in the same connected group.

The basic flow of the connected components algorithm is as follows:

1. Assign a unique integer as an ID to each entity.

2. Propagate this ID to its connected neighbors, so that each vertex will receive all its neighbors’ IDs.

3. Update the old ID to be the smallest ID among its neighbors’ and its own current ID.

4. Repeat above steps 2 and 3 until no ID update happens.

When iteration stops, the vertices in each connected component will have the same ID. And this ID will be the smallest

ID within the connected component. The algorithm above not only finds the connected entities, but also selects a “lead”

entity within each connected group. The last step of the grouping query is to let the lead entities inherit all the attributes

in the group and to remove the other entities. The graph of user-attribute relationships after the grouping query finishes is

shown in Figure 6.

Figure 6: After the grouping query finishes, user 1, 2, 3 will be merged into user 1. user 4 and 5 will

be merged into user 4.

In some use cases, multiple iterations are needed to repeat the linking - grouping steps. For example (see figure 6)

after we merge users 1, 2, 3 into 1, user 1 will have all the attributes from 2, 3 and itself. So user 1 can connect to other

entities that it did not in the last iteration, thus new groups can be formed. Therefore, the linking and grouping shall be

repeated until no more same-as edge needs to be inserted.

MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 7

Key benefits of the solution

Data lineage

One key feature of the above solution is that all the linking and grouping are operated on the user vertices (i.e. only the

user vertices and the edges connected to them will be inserted or deleted). By constraining the data insertion/deletion

within the user subgraph, the original account record (i.e. the account vertices and their relationships to the attributes)

will be left untouched, thus the data lineage is well preserved.

Parallel computation

It is also worth mentioning that in all above steps the computation for each vertex or edge can be run in parallel. For

example, in the second step of the connected component algorithm, one thread can handle one edge computation

where the ID of the source vertex is aggregated on the target vertex. Similarly, in the third step, each vertex can have one

thread to update its old ID. Such a computation model can naturally fit into a map-reduce framework.

Incremental update

In real practice, the batch process on all the data does not need to be performed whenever new records are loaded into

the database. The above solution allows incremental updates where only new accounts (or old accounts with updates)

and the minimum amount of relevant old accounts need to be processed. When having new data or streaming data

loaded, the pairwise matching only needs to be performed on the newly loaded account vertices and the old account

vertices that share the same attributes with the newly loaded vertices. Such an optimization significantly reduces the

computational workload.

Generic description and solution for the problem

Clustering is a classic unsupervised machine learning problem. The linking and grouping method described above

converts the entity resolution problem to a graph clustering problem. Specifically, in the linking stage, an entity network

is created. Then in the grouping stage, different graph clustering algorithms can be used to group the connected entities

together. The connected component algorithm is a good choice when links are deterministic and certain, but other graph

clustering algorithms such as label propagation and Louvain may be more suitable if the linkages are weighted according

to confidence. Since graph is an abstraction of relationships, the graph solution in the above example can be easily

adapted for other use cases. Here we will list four more examples.

1) Flight ticket booking

An airline company can have millions of ticket booking records in the database. Each booking record can include the

ticket number, passenger first/last name, email address, phone number, departure, destination as well as other related

information. One passenger may use different email addresses, phone numbers, or names to book flight tickets. In this

scenario, each booking record is a digital entity with multiple attributes. The entity resolution task is to link the tickets to

the real-world entity, passenger. Applying our approach above, we can create a graph with tickets connecting to their

attributes. Then we can traverse all pairs of tickets that share some common attributes and insert an edge between them

if they are considered to be booked by the same person. Lastly all the connected tickets will be grouped together.

2) Owner of the device

More and more devices (e.g. smartphone, television and even refrigerator) now have the capability to connect to the

internet. For example, we can use the device network activity records to find the devices that belong to the same person.

In each record, we have a timestamp, device id, IP address, URL, and cookie. Following our 3-step approach above, we

will first create a graph using the device ID as the digital entity, and the IP address, URL and cookie as the attributes of the

entity. In this case, the timestamp information can be stored on the edge between device and IP. In the initialization stage,

we will assume each device is owned by a different owner, and connect the owner to the IP address of his device with the

connection time range on the edge. In the linking stage, an edge will be inserted between each pair of owners if they were

using the same IP during a period of time. Lastly in the grouping stage, the connected owners will be merged together

and their devices will be assigned to the same owner.

MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 8

3) Social media account

One person can have multiple social media accounts such as Instagram, Facebook, and TikTok. Different accounts can

be registered using different user names, email addresses, and profile information. By adapting the 3-step approach

above, we can also identify the real person behind different social media accounts. The initialization step will be the same

where we assign a person to each account, and connect the account information to that person. In the linking stage,

different weights can be given to different profile information entries (e.g. user name, email, age, gender). For each pair

of persons that share a sufficient amount of information, an edge will be inserted between them with the weight sum of

their common information entries. In the grouping stage, the connected component algorithm can be used to group the

person vertices together if the total weight on their connections is above a certain threshold.

4) Vehicle identification

Electronic toll collection can significantly reduce traffic congestion. The signal from the IoT devices on the vehicle can

be utilized to identify the vehicle. For each toll sensor read, the signal from a variety of IoT devices (GPS, RFID, WiFi,

Bluetooth) on all the vehicles within a range can be obtained. To identify which group of IoT devices are on the same

vehicle, when loading the toll sensor data, we can insert a vertex for each toll sensor read, and connect this vertex to all

the IoT device vertices in this read so that the IoT devices on the same vehicle can be connected through multiple sensor

read vertices. In this example, the count of sensor reads where two IoT devices are found can be used to draw linkage

between the IoT devices.

Now is the time
We’ve shown that graph databases are a powerful tool for entity resolution especially on a large data scale. We also

introduced a general approach for solving entity resolution tasks with graph algorithms, and discussed a representative

use case (i.e. linking multiple login accounts for a streaming media service) in detail to show how the user entities can be

resolved by running three queries in the graph database.

Now is an ideal time for you to get started with graph databases. One of the best ways to get started with graph analytics

is with TigerGraph Cloud. It’s free and you can create an account in a few minutes. Best of all it includes the starter kit

called “In-database Machine Learning for Big Data Entity Resolution”, which covers the three step approach outlined in

this document.

About the Author

Dr. Liu received his B. S. degree from Tsinghua University, China, and his Ph.D. degree from Stanford University. His

Ph.D. research topic is focused on applying numerical methods to simulate nanoscale physics and developing physics

models based on statistical analysis. While completing his Ph.D. Dr. Liu published over 10 top journal papers including

one paper published in the Proceeding of the National Academy of Sciences. He also earned a Ph.D. minor degree in

philosophy focusing on the applications of mathematical logic in artificial intelligence. Shortly after graduation Dr. Liu

joined TigerGraph, Inc. as a solution architect and currently works on implementing machine learning algorithms on

native parallel graph databases.

About TigerGraph
TigerGraph is the only scalable graph database for the enterprise. TigerGraph’s proven technology connects data silos for deeper, wider and
operational analytics at scale. Four out of the top five global banks use TigerGraph for real-time fraud detection. Over 50 million patients receive care
path recommendations to assist them on their wellness journey. 300 million consumers receive personalized offers with recommendation engines
powered by TigerGraph. The energy infrastructure for 1 billion people is optimized by TigerGraph for reducing power outages. TigerGraph’s proven
technology supports applications such as fraud detection, customer 360, MDM, IoT, AI, and machine learning.

For more information visit www.tigergraph.com and follow us at: Facebook Twitter LinkedIn

Contact us at sales@tigergraph.com

TigerGraph
3 Twin Dolphin Drive, Suite 225
Redwood City, California 94065

https://www.tigergraph.com/cloud/
https://www.tigergraph.com/starterkits/
https://www.tigergraph.com/starterkits/
https://www.facebook.com/TigerGraphDB
https://twitter.com/tigergraphdb
https://www.linkedin.com/company/tigergraph

What is TigerGraph?

- The only scalable graph database for the enterprise:
40-300x faster than competition

- Foundational for AI and ML solutions

- Designed for efficient concurrent OLTP and OLAP
workloads

- SQL-like query language (GSQL) accelerates time to
solution

- Available on-premise & on: Google GCP,
Microsoft Azure,

Website：TigerGraph.com.cn
Follow us：WeChat, LinkedIn，bilibili
Contact us：sales_cn@tigergraph.com

Advanced Analytics and Machine
Learning on Connected Data

Some of Our Customers

https://www.tigergraph.com.cn/product/cloud/starterkits/

WeChat: TigerGraph TigerGraph.com.cn/link/

Get Started for Free at：TGcloud.io

TigerGraph Cloud graph database as a service is built for agile teams who’d
rather be building innovative applications to deliver new insights than
managing databases.

Tigergraph supports applications such as fraud detection, anti money
laundering, customer 360, unified ID, supply chain, knowledge graph,
personalized recommendation, artificial intelligence and machine learning, etc.

STARTER KIT OVERVIEW

COVID-19 ANALYSIS Detect hubs of infection and track the
movements of potential spreaders

CUSTOMER 360-ATTRIBUTION &
ENGAGEMENT GRAPH

Create a real-time 360 view of the
customer journey for attribution and
engagement insights.

CYBERSECURITY THREAT
DETECTION-IT

Block cybersecurity threats by detecting
interconnected events, devices and people

ENTERPRISE KNOWLEDGE
GRAPH (CORPORATE DATA)

Analysis of corporate data including
investors and key stakeholders.

ENTERPRISE KNOWLEDGE
GRAPH (CRUNCHBASE)

Knowledge graph examples featuring
crunchbase data with startups, founders and
companies.

ENTITY RESOLUTION (MDM)
Identify, link and merge entities such as
customers with analysis of attributes and
relationships.

FRAUD & MONEY LAUNDERING
DETECTION

Multiple types of fraud and money
laundering patterns.

GSQL 101 Introduction to TigerGraphs powerful
graph query language.

HEALTHCARE GRAPH (DRUG
INTERACTION/ FAERS)

Healthcare example focused on public
(FAERS) and private data for
pharmaceutical drugs.

HEALTHCARE–REFERRAL
NETWORKS, HUB (PAGERANK) &
COMMUNITY DETECTION

Analyze member claims to establish referral
networks, identify most influential prescriber’s
and discover the connected prescriber
communities.

MACHINE LEARNING &
REAL-TIME FRAUD DETECTION

Mobile industry example for detecting fraud
in real-time and generating graph- based
features for training the machine learning
solution.

NETWORK & IT RESOURCE
OPTIMIZATION

Network and IT resource graph for modeling
and analyzing the impact of the hardware
outage on workloads.

RECOMMENDATION ENGINE
(MOVIE RECOMMENDATION)

Graph-based movie recommendation
engine built with public data.

SOCIAL NETWORK ANALYSIS
Social network example for understanding and
analyzing relationships.

SUPPLY CHAIN ANALYSIS
Example covering inventory and impact
analysis.

“Graph algorithms scale exponentially. Graph
requires scalable software, more so than any of the
other situations or challenges you have considered.”

– Brad Spiers, Executive Director,
JPMorgan Chase

“With TigerGraph we can join sources of data
together and make connections within the data that

previously we couldn’t. We can now answer
questions that, for the last 20 years, we didn’t think

were possible to ask.”

– Harry Powell , Director of Data & Analytics
Jaguar Land Rover

Customer Benefits:

- Real-time fraud detection at

- 7 out of the world’s top 10 global banks

- Care path recommendations for 50 million patients

- Personalized offers for 300 million consumers

- Energy infrastructure optimization for 1 billion people

http://www.tigergraph.com.cn
https://www.tigergraph.com.cn/wp-content/uploads/2021/01/wechat_qrcode.jpg
https://www.linkedin.com/company/tigergraph-china
https://space.bilibili.com/535031043
mailto:sales_cn@tigergraph.com
https://www.tigergraph.com.cn/link/

